Abstract

The Brazilian Amazon forest is tremendously important for its ecosystem services but attribution of economically measurable values remains scarce. Mapping these values is essential for designing conservation strategies that suitably combine regional forest protection with sustainable forest use. We estimate spatially explicit economic values for a range of ecosystem services provided by the Brazilian Amazon forest, including food production (Brazil nut), raw material provision (rubber and timber), greenhouse gas mitigation (CO2 emissions) and climate regulation (rent losses to soybean, beef and hydroelectricity production due to reduced rainfall). Our work also includes the mapping of biodiversity resources and of rent losses to timber production by fire-induced degradation. Highest values range from US$56.72 ± 10 ha−1 yr−1 to US$737 ± 134 ha−1 yr−1 but are restricted to only 12% of the remaining forest. Our results, presented on a web platform, identify regions where high ecosystem services values cluster together as potential information to support decision-making.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available at http://amazones.info. Further description of how the data were processed and analysed is presented in the SI.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science https://doi.org/10.1126/science.aam5962 (2017).

  2. 2.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

  3. 3.

    Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).

  4. 4.

    Phillips, O. L. & Brienen, R. J. W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 12, 1 (2017).

  5. 5.

    Fearnside, P. M. Environmental services as a strategy for sustainable development in rural Amazonia. Ecol. Econ. 20, 53–70 (1997).

  6. 6.

    Oliveira, L. J., Costa, M. H., Soares-Filho, B. & Coe, M. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8, 1–10 (2013).

  7. 7.

    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

  8. 8.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

  9. 9.

    Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).

  10. 10.

    Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).

  11. 11.

    Pearce, D, Markandya, A. & Barbier, E. Blueprint for a Green Economy (Earthscan, London, 1989).

  12. 12.

    Bateman, I. J. et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341, 45–50 (2013).

  13. 13.

    Andersen, L. E, Granger, C. W, Reis, E. J, Weinhold, D. & Wunder, S. The Dynamics of Deforestation and Economic Growth in the Brazilian Amazon 282 (Cambridge Univ. Press, Cambridge, 2002).

  14. 14.

    Strand, J. Modeling the marginal value of rainforest losses: a dynamic value function approach. Ecol. Econ. 131, 322–329 (2017).

  15. 15.

    Torras, M. The total economic value of Amazonian deforestation, 1978–1993. Ecol. Econ. 33, 283–297 (2000).

  16. 16.

    Laurila-Pant, M., Lehikoinen, A., Uusitalo, L. & Venesjärvi, R. How to value biodiversity in environmental management?. Ecol. Indic. 55, 1–11 (2015).

  17. 17.

    Small, N., Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang. 44, 57–67 (2017).

  18. 18.

    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).

  19. 19.

    Soares-Filho, B. S. et al. Economic Valuation of Changes in the Amazon Forest Area: Economic Losses by Fires to Sustainable Timber Production (Center for Remote Sensing, Belo Horizonte, 2017).

  20. 20.

    Resolution n. 406 of February 2, 2009 (CONAMA, Brazil, 2009).

  21. 21.

    Oliveira, A. S. et al. Economic losses to sustainable timber production by fire in the Brazilian Amazon. Geogr. J. https://doi.org/10.1111/geoj.12276 (2018).

  22. 22.

    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, https://doi.org/10.1126/sciadv.aat2340 (2018).

  23. 23.

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

  24. 24.

    Silvestrini, R. A. et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol. Appl. 21, 1573–1590 (2011).

  25. 25.

    Mendonça, M. J. C. et al. The economic cost of the use of fire in the Amazon. Ecol. Econ. 49, 89–105 (2004).

  26. 26.

    Nunes, F. et al. Economic benefits of forest conservation: assessing the potential rents from Brazil nut concessions in Madre de Dios, Peru, to channel REDD+ investments. Environ. Conserv. 39, 132–143 (2012).

  27. 27.

    Jaramillo-Giraldo, C., Soares Filho, B., Carvalho Ribeiro, S. M. & Gonçalves, R. C. Is it possible to make rubber extraction ecologically and economically viable in the Amazon? The southern Acre and Chico Mendes Reserve case study. Ecol. Econ. 134, 186–197 (2017).

  28. 28.

    Ribeiro, S. et al. Can multifunctional livelihoods including recreational ecosystem services (RES) and non timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon?. Ecosyst. Serv. 31, 517–526 (2018).

  29. 29.

    Fearnside, P. M In Oxford Research Encyclopedia of Environmental Science (ed. H. Shugart) (Oxford Univ. Press, Oxford, 2017).

  30. 30.

    Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. 110, 9601–9606 (2013).

  31. 31.

    Sumila, T. C. A., Pires, G. F., Fontes, V. C. & Costa, M. H. Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation. J. Hydrometeorol. 18, 1643–1655 (2017).

  32. 32.

    Rochedo, P. R. R. et al. The threat of political bargaining to climate mitigation in Brazil. Nat. Clim. Change 8, 695–698 (2018).

  33. 33.

    Van der Hoff, R., Rajão, R. & Leroy, P. Clashing interpretations of REDD+ “results” in the Amazon Fund. Clim. Change 150, 433–445 (2018).

  34. 34.

    Soares-Filho, B. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006).

  35. 35.

    Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

  36. 36.

    Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 1–15 (2016).

  37. 37.

    Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).

  38. 38.

    Summary for Policymakers of the Assessment Report of the Intergovernmental Science-policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, Bonn, 2016).

  39. 39.

    Oliveira, U. et al. Economic Valuation of Changes in the Amazon Forest Area: Priority Areas for Biodiversity Conservation in the Brazilian Amazon (Center for Remote Sensing, Belo Horizonte, 2017).

  40. 40.

    Nunes, F. S., Soares Filho, B. & Rodrigues, H. Valorando a floresta em pé: a rentabilidade da castanha do Brasil no Acre. In IX Encontro Nacional da Ecoeco, Brasília (2011).

  41. 41.

    Dean, W Brazil and the Struggle for Rubber: A Study in Environmental History (Studies in Environment and History) (Cambridge Univ. Press, Cambridge, 2002)

  42. 42.

    Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).

  43. 43.

    Fearnside, P. M. Conservation policy in Brazilian Amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).

  44. 44.

    Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

  45. 45.

    Merry, F., Soares-Filho, B. S., Nepstad, D., Amacher, G. & Rodrigues, H. Balancing conservation and economic sustainability: the future of the Amazon timber industry. Environ. Manage. 44, 395–407 (2009).

  46. 46.

    State Capitals of Brazil (Instituto Brasileiro de Geografia e Estatística, 2010); http://downloads.ibge.gov.br/downloads_geociencias.htm

  47. 47.

    State Boundaries of Brazil (Instituto Brasileiro de Geografia e Estatística, 2015); http://mapas.ibge.gov.br/bases-e-referenciais/bases-cartograficas/malhas-digitais

  48. 48.

    Projeto Prodes: Monitoramento da Floresta Amazônica Brasileira por Satélite (Instituto Nacional de Pesquisas Espaciais, 2017); http://www.obt.inpe.br/prodes/index.php

  49. 49.

    Limits of Biomes in Brazil (Ministério do Meio Ambiente, 2017); http://mapas.mma.gov.br/i3geo/datadownload.htm

  50. 50.

    Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS (Pergamon, Oxford, 1994).

  51. 51.

    Houghton, R. A. et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403, 301–304 (2000).

  52. 52.

    Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R. & Delworth, T. L. Quantifying the uncertainty inforecasts of anthropocentric climate change. Nature 407, 617–620 (2000).

Download references

Acknowledgements

We received financial support from the Norwegian government through the World Bank. Feedback was provided by Y. Kraus and J. Vincent. B.S.F., M.C., G.P., R.J. and U.O. received support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). U.O., A.O. and R.H. received support from CAPES (Coordenação e Aperfeiçoamento de Nível Superior). B.S.F. was also supported by the Humboldt Foundation. P.M. was supported by TEEB (The Economics of Ecosystems and Biodiversity) AgriFood project.

Author information

Affiliations

  1. Development Research Group, the World Bank, Washington, DC, USA

    • Jon Strand
    •  & Michael Toman
  2. Center for Remote Sensing, Federal University of Minas Gerais, Belo Horizonte, Brazil

    • Britaldo Soares-Filho
    • , Ubirajara Oliveira
    • , Sonia Carvalho Ribeiro
    •  & Aline Oliveira
  3. Department of Agricultural Engineering, Federal University of Viçosa, Viçosa, Brazil

    • Marcos Heil Costa
    •  & Gabrielle Ferreira Pires
  4. Lagesa, Federal University of Minas Gerais, Belo Horizonte, Brazil

    • Raoni Rajão
    •  & Richard van der Hoff
  5. Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil

    • Peter May
  6. Nijmegen School of Management, Radboud University, Nijmegen, the Netherlands

    • Richard van der Hoff
  7. International Union for Conservation of Nature, Washington, DC, USA

    • Juha Siikamäki
  8. State University of Rio de Janeiro, Rio de Janeiro, Brazil

    • Ronaldo Seroa da Motta

Authors

  1. Search for Jon Strand in:

  2. Search for Britaldo Soares-Filho in:

  3. Search for Marcos Heil Costa in:

  4. Search for Ubirajara Oliveira in:

  5. Search for Sonia Carvalho Ribeiro in:

  6. Search for Gabrielle Ferreira Pires in:

  7. Search for Aline Oliveira in:

  8. Search for Raoni Rajão in:

  9. Search for Peter May in:

  10. Search for Richard van der Hoff in:

  11. Search for Juha Siikamäki in:

  12. Search for Ronaldo Seroa da Motta in:

  13. Search for Michael Toman in:

Contributions

J.S., B.S.F. and M.C. designed the project, conducted research and wrote the manuscript. G.P., U.O., S.R., R.R. and A.O. conducted research and helped write the manuscript. J.S. and R.M. conducted research. P.M., M.T. and R.H. helped write the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jon Strand or Britaldo Soares-Filho.

Supplementary information

  1. Supplementary Information

    Supplementary Sections 1–7, Supplementary Figures 1–75, Supplementary Tables 1–19, Supplementary References 1–163

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41893-018-0175-0