Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unprecedented rates of land-use transformation in modelled climate change mitigation pathways

Abstract

Integrated assessment models generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2 °C, cost-effective mitigation pathways rely on extensive deployments of CO2 removal (CDR) technologies, including multi-gigatonne yearly CDR from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. While these assumed CDR deployments keep ambitious temperature targets in reach, the associated rates of land-use transformation have not been evaluated. Here, we view implied integrated-assessment-model land-use conversion rates within a historical context. In scenarios with a likely chance of limiting warming to 2 °C in 2100, the rate of energy cropland expansion supporting BECCS proceeds at a median rate of 8.8 Mha yr−1 and 8.4% yr−1. This rate exceeds—by more than threefold—the observed expansion of soybean, the most rapidly expanding commodity crop. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Historical land-use transformation rates do not represent an upper bound for future transformation rates. However, their stark contrast with modelled BECCS deployment rates implies challenges to explore in harnessing—or presuming the ready availability of—large-scale biomass-based CDR in the decades ahead. Reducing BECCS deployment to remain within these historical expansion rates would mean either the 2 °C target is missed or additional mitigation would need to occur elsewhere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deployment of biomass-based CDR in IAM scenarios.
Fig. 2: Land-use transformation supporting biomass-based CDR in IAM <2 °C scenarios.
Fig. 3: Comparison of historical and implied energy crop extensification.
Fig. 4: Upstream and downstream RD&D needs.

Similar content being viewed by others

References

  1. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change Ch. 6 (Cambridge Univ. Press, 2015).

  2. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 1–8 (2013).

    Article  CAS  Google Scholar 

  3. Calvin, K. et al. 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ. 31, S107–S120 (2009).

    Article  Google Scholar 

  4. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

    Article  CAS  Google Scholar 

  5. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  6. Rose, S. K. et al. Bioenergy in energy transformation and climate management. Clim. Change 123, 477–493 (2014).

    Article  Google Scholar 

  7. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  8. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  CAS  Google Scholar 

  9. Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim. Change 118, 1–14 (2013).

    Article  Google Scholar 

  10. Van Vuuren, D. P. et al. The role of negative CO2 emissions for reaching 2 ºC—insights from integrated assessment modelling. Clim. Change 118, 15–27 (2013).

    Article  CAS  Google Scholar 

  11. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2014).

    Article  Google Scholar 

  12. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  13. Bruinsma, J. World Agriculture: Towards 2015/2030. An FAO Perspective (Earthscan, 2002).

  14. Smith, L. J. & Torn, M. S. Ecological limits to terrestrial biological carbon dioxide removal. Clim. Change 118, 89–103 (2013).

    Article  CAS  Google Scholar 

  15. Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).

    Article  Google Scholar 

  16. Robiou du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2016).

    Article  Google Scholar 

  17. FAOSTAT: Crops (FAO, 2016); http://www.fao.org/faostat/en/#data/QC/.

  18. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision ESA Working Paper No. 12-03 (FAO, 2012).

  19. Byerlee, D., Falcon, W. P. & Naylor, R. L. The Tropical Oil Crop Revolution (Oxford Univ. Press, New York, NY, 2017).

  20. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  CAS  Google Scholar 

  21. FAOSTAT: Land Use (FAO, 2016); http://www.fao.org/faostat/en/#data/RL.

  22. Lima, M., Skutsch, M. & Costa, G. D. M. Deforestation and the social impacts of soy for biodiesel: perspectives of farmers in the South Brazilian Amazon. Ecol. Soc. 16, 4 (2011).

    Article  Google Scholar 

  23. Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).

    Article  Google Scholar 

  24. Fuss, S. et al. Research priorities for negative emissions. Environ. Res. Lett. 11, 11 (2016).

    Article  Google Scholar 

  25. Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Clim. Change 123, 705–718 (2014).

    Article  Google Scholar 

  26. Sanchez, D. L., Nelson, J. H., Johnston, J., Mileva, A. & Kammen, D. M. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Clim. Change 5, 230–234 (2015).

    Article  CAS  Google Scholar 

  27. Lomax, G., Lenton, T. M., Adeosun, A. & Workman, M. Investing in negative emissions. Nat. Clim. Change 5, 498–500 (2015).

    Article  Google Scholar 

  28. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 1–6 (2010).

    Article  Google Scholar 

  29. Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 1, 60–64 (2008).

    Article  Google Scholar 

  30. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    Article  CAS  Google Scholar 

  31. Calvin, K. et al. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Clim. Change 123, 691–704 (2014).

    Article  Google Scholar 

  32. Koh, L. P. & Ghazoul, J. Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol. Conserv. 141, 2450–2460 (2008).

    Article  Google Scholar 

  33. Chum, H. et al. The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Ch. 2 (Cambridge Univ. Press, 2011).

  34. Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 1–11 (2013).

    Article  CAS  Google Scholar 

  35. Caldas, M. M. et al. Factors affecting farmers’ willingness to grow alternative biofuel feedstocks across Kansas. Biomass Bioenergy 66, 223–231 (2014).

    Article  Google Scholar 

  36. Song, F., Zhao, J. & Swinton, S. M. Switching to perennial energy crops under uncertainty and costly reversibility. Am. J. Agric. Econ. 93, 764–779 (2011).

    Article  Google Scholar 

  37. Edmonds, J. et al. Can radiative forcing be limited to 2.6 Wm–2 without negative emissions from bioenergy and CO2 capture and storage? Clim. Change 118, 29–43 (2013).

    Article  Google Scholar 

  38. Lotze-campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

    Article  Google Scholar 

  39. Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural land elasticities in the United States and Brazil. Appl. Econ. Perspect. Policy 33, 449–462 (2011).

    Article  Google Scholar 

  40. Swinton, S. M., Babcock, B. A., James, L. K. & Bandaru, V. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited. Energy Policy 39, 5254–5258 (2011).

    Article  Google Scholar 

  41. Lark, T. J., Salmon, J. M. & Gibbs, H. K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015).

  42. Lynd, L. R. et al. How biotech can transform biofuels. Nat. Biotechnol. 26, 169–172 (2008).

    Article  CAS  Google Scholar 

  43. Sims, R. E. H., Mabee, W., Saddler, J. N. & Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 101, 1570–1580 (2010).

    Article  CAS  Google Scholar 

  44. United States Environmental Protection Agency 81 FR 89746— Renewable Fuel Standard Program: Standards for 2017 and Biomass-Based Diesel Volume for 2018 (Office of the Federal Register, National Archives and Records Administration, 2016).

  45. Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S. & Li, C. Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res. 9, 1–14 (2016).

    Article  CAS  Google Scholar 

  46. Tillman, D. A. Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19, 365–384 (2000).

    Article  Google Scholar 

  47. Gollakota, S. & McDonald, S. Commercial-scale CCS project in Decatur, Illinois—construction status and operational plans for demonstration. Energy Procedia 63, 5986–5993 (2014).

    Article  Google Scholar 

  48. Koelbl, B. S., van den Broek, M. A., Faaij, A. P. C. & van Vuuren, D. P. Uncertainty in carbon capture and storage (CCS) deployment projections: a cross-model comparison exercise. Clim. Change 123, 461–476 (2014).

    Article  CAS  Google Scholar 

  49. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).

    Article  CAS  Google Scholar 

  50. Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).

    Article  Google Scholar 

  51. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there—energy technology transformation pathways in the EMF27 scenarios. Clim. Res. 123, 369–382 (2014).

    Article  Google Scholar 

  52. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

    Article  Google Scholar 

  53. Blanford, G. J., Kriegler, E. & Tavoni, M. Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27. Clim. Change 123, 383–396 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the David and Lucile Packard Foundation and Alexander von Humboldt Foundation. We thank S. Benson, E. Baik and S. Li for helpful discussions. We also thank the FAO and IAM community for making data publically accessible.

Author information

Authors and Affiliations

Authors

Contributions

P.A.T., C.B.F., D.B.L. and K.J.M. designed the research. P.A.T. analysed the data and drafted the paper. P.A.T., C.B.F., D.B.L., D.L.S. and K.J.M. revised the paper.

Corresponding author

Correspondence to P. A. Turner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, P.A., Field, C.B., Lobell, D.B. et al. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat Sustain 1, 240–245 (2018). https://doi.org/10.1038/s41893-018-0063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-018-0063-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene