Targeted emission reductions from global super-polluting power plant units


There are more than 30,000 biomass- and fossil-fuel-burning power plants now operating worldwide, reflecting a tremendously diverse infrastructure, which ranges in capacity from less than a megawatt to more than a gigawatt. In 2010, 68.7% of electricity generated globally came from these power plants, compared with 64.2% in 1990. Although the electricity generated by this infrastructure is vital to economic activity worldwide, it also produces more CO2 and air pollutant emissions than infrastructure from any other industrial sector. Here, we assess fuel- and region-specific opportunities for reducing undesirable air pollutant emissions using a newly developed emission dataset at the level of individual generating units. For example, we find that retiring or installing emission control technologies on units representing 0.8% of the global coal-fired power plant capacity could reduce levels of PM2.5 emissions by 7.7–14.2%. In India and China, retiring coal-fired plants representing 1.8% and 0.8% of total capacity can reduce total PM2.5 emissions from coal-fired plants by 13.2% and 16.0%, respectively. Our results therefore suggest that policies targeting a relatively small number of ‘super-polluting’ units could substantially reduce pollutant emissions and thus the related impacts on both human health and global climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Maps of biomass- and fossil-fuel-fired power-generating units worldwide.
Fig. 2: Age structure of global power-generating capacity and emissions.
Fig. 3: Shares of total capacity and estimated emissions by unit capacity.
Fig. 4: Super-polluting units.
Fig. 5: Potential reductions of PM2.5 emissions and the associated coal-fired generating capacity.


  1. 1.

    Energy Statistics and Balances of OECD Countries, 1990–2010 (International Energy Agency, Paris, 2012).

  2. 2.

    Energy Statistics and Balances of Non-OECD Countries, 1990–2010 (International Energy Agency, Paris, 2012).

  3. 3.

    Chen, S. T., Kuo, H. I. & Chen, C. C. The relationship between GDP and electricity consumption in 10 Asian countries. Energy Policy 35, 2611–2621 (2007).

    Article  Google Scholar 

  4. 4.

    Chan, C. K. & Yao, X. Air pollution in mega cities in China. Atmos. Environ. 42, 1–42 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Yoo, S. H. & Lee, J. S. Electricity consumption and economic growth: a cross-country analysis. Energy Policy 38, 622–625 (2010).

    Article  Google Scholar 

  6. 6.

    Liu, F. et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmos. Chem. Phys. 15, 13299–13317 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Zhao, Y. et al. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction. Atmos. Environ. 42, 8442–8452 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Ummel, K. CARMA Revisited: an Updated Database of Carbon Dioxide Emissions From Power Plants Worldwide Center for Global Development Working Paper 304 (2012).

  9. 9.

    Lu, Z. & Streets, D. G. Increase in NO x emissions from Indian thermal power plants during 1996–2010: unit-based inventories and multisatellite observations. Environ. Sci. Technol. 46, 7463–7470 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Lu, Z., Streets, D. G., de Foy, B. & Krotkov, N. A. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ. Sci. Technol. 47, 13993–14000 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Emission Database for GlobalAtmospheric Research (EDGAR) v. 4.3.1 (EC-JRC/PBL, European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), accessed on 19 August 2017);

  12. 12.

    Crippa, M. et al. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 16, 3825–3841 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Unger, N., Shindell, D. T. & Wang, J. S. Climate forcing by the on-road transportation and power generation sectors. Atmos. Environ. 43, 3077–3085 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, Q., He, K. & Huo, H. Cleaning China’s air. Nature 484, 161–162 (2012).

    CAS  Google Scholar 

  16. 16.

    Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Persp. 122, 397-403 (2014).

    Google Scholar 

  17. 17.

    Markandya, A. & Wilkinson, P. Electricity generation and health. Lancet 370, 979–990 (2007).

    Article  Google Scholar 

  18. 18.

    Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    Article  Google Scholar 

  19. 19.

    Kurokawa, J. et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    EMEP/CEIP 2014 Present State of Emission Data (European Monitoring and Evaluation Programme (EMEP), accessed on 15 December 2015);

  21. 21.

    Air Pollution Emissions Trends Data (Environmental Protection Agency (EPA), accessed on 15 December 2015);

  22. 22.

    The National Pollutant Release Inventory (NPRI) (Environment Canada, accessed on 15 December 2015);

  23. 23.

    Zhang, J. J. & Samet, J. M. Chinese haze versus Western smog: lessons learned. J. Thorac. Dis. 7, 3-13 (2015).

    Google Scholar 

  24. 24.

    Verstraeten, W. W. et al. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 8, 690–695 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–59 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Frost, G. J. D. et al. Effects of changing power plant NO x emissions on ozone in the eastern United States: Proof of concept. J. Geophys. Res. Atmos. 111, D12306 (2006).

    Article  Google Scholar 

  27. 27.

    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Shindell, D. & Faluvegi, G. The net climate impact of coal-fired power plant emissions. Atmos. Chem. Phys. 10, 3247–3260 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Pétron, G., Tans, P., Frost, G., Chao, D. & Trainer, M. High‐resolution emissions of CO2 from power generation in the USA. J. Geophys. Res. 113, G04008 (2008).

    Article  Google Scholar 

  30. 30.

    Gurney, K. R. et al. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 43, 5535–5541 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Asefi‐Najafabady, S. et al. A multiyear, global gridded fossil fuel CO2 emission data product: evaluation and analysis of results. J. Geophys. Res. 119, 10213-10231 (2014).

    Google Scholar 

  32. 32.

    Freudenburg, W. R. Privileged access, privileged accounts: toward a socially structured theory of resources and discourses. Soc. Forces 84, 89–114 (2005).

    Article  Google Scholar 

  33. 33.

    Grant, D., Jorgenson, A. & Longhofer, W. Targeting electricity’s extreme polluters to reduce energy-related CO2 emissions. J. Environ. Stud. Sci. 3, 376–380 (2013).

    Article  Google Scholar 

  34. 34.

    Jorgenson, A., Longhofer, W. & Grant, D. Disproportionality in power plants’ carbon emissions: a cross-national study. Sci. Rep. 6, 28661 (2016).

  35. 35.

    The Emissions & Generation Resource Integrated Database (eGRID) (US Environmental Protection Agency (USEPA), accessed on 15 December 2015);

  36. 36.

    World Electric Power Plant Database (WEPP) (Platts, 2014).

  37. 37.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Quadrelli, R. & Peterson, S. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy 35, 5938–5952 (2007).

    Article  Google Scholar 

  39. 39.

    Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Power Plant Carbon Dioxide Capture and Storage Projects (accessed on 15 August 2017);

  41. 41.

    Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Buonocore, J. J. et al. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 6, 100–105 (2016).

    Article  Google Scholar 

  43. 43.

    Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Unger, N. et al. Attribution of climate forcing to economic sectors. Proc. Natl Acad. Sci. USA 107, 3382–3387 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Work Plan of Fully Implementing Ultra-low Emissions and Energy Savings by Coal-fired Power Plants (in Chinese) (China’s Ministry of Environmental Protection, 2016);

  46. 46.

    The Power Sector Development during the 13th Five-Year-Plan (in Chinese) (NationalEnergy Administration, 2016);

  47. 47.

    Wang, S. et al. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants. Environ. Res. Lett. 10, 114015 (2015).

    Article  Google Scholar 

  48. 48.

    Liu, H. & Liang, D. A review of clean energy innovation and technology transfer in China. Renew. Sust. Energ. Rev. 18, 486–498 (2013).

    Article  Google Scholar 

  49. 49.

    Liu, Z. et al. A low-carbon road map for China. Nature 500, 143–145 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Seto, K. C. et al. Carbon lock–in: types, causes, and policy implications. Annu. Rev. Environ. Resour. 41, 425–452 (2016).

    Article  Google Scholar 

  51. 51.

    Ha-Duong, M., Grubb, M. J. & Hourcade, J. C. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature 390, 270–273 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    Maruyama, N. & Eckelman, M. J. Long-term trends of electric efficiencies in electricity generation in developing countries. Energy Policy 37, 1678–1686 (2009).

    Article  Google Scholar 

  53. 53.

    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006).

  55. 55.

    USEPA: Compilation of Air Pollutant Emission Factors (AP-42) (US Environmental Protection Agency (USEPA), accessed on 15 December 2015);

  56. 56.

    Zhang, Q. et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131–5153 (2009).

    CAS  Article  Google Scholar 

  57. 57.

    Lu, Z. et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos. Chem. Phys. 10, 6311–6331 (2010).

    CAS  Article  Google Scholar 

  58. 58.

    Streets, D. G., Wu, Y. & Chin, M. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys. Res. Lett. 33, L15806 (2006).

    Article  Google Scholar 

  59. 59.

    Lu, Z., Zhang, Q. & Streets, D. G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos. Chem. Phys. 11, 9839–9864 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Streets, D. G. et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108, D21 (2003).

    Google Scholar 

  61. 61.

    Reddy, M. S. & Venkataraman, C. Inventory of aerosol and sulphur dioxide emissions from India. Part II: biomass combustion. Atmos. Environ. 36, 699–712 (2002).

    CAS  Article  Google Scholar 

  62. 62.

    Graus, W. H. J. & Worrell, E. Effects of SO2 and NO x control on energy-efficiency power generation. Energy Policy 35, 3898–3908 (2007).

    Article  Google Scholar 

  63. 63.

    Yao, W. Experiment on the SO2 removal efficiency of wet scrubbers. Environ. Protection 2, 11–13 (1989).

    Google Scholar 

  64. 64.

    Zhu, F., Liu, D. & Wang, S. Overview of NO x emissions and control measures from thermal power plants. Environ. Protection 21, 40–41 (2009).

    Google Scholar 

  65. 65.

    Zhao, Y., Wang, S., Nielsen, C. P., Li, X. & Hao, J. Establishment of a database of emissions factors for atmospheric pollutants from Chinese coal-fired power plants. Atmos. Environ. 44, 1515–1523 (2010).

    CAS  Article  Google Scholar 

  66. 66.

    EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013: Technical Guidance to Prepare National Emission Inventories EEA Technical Report 12/2013 (EMEP/EEA, 2013).

  67. 67.

    Nazari, S. et al. Experimental determination and analysis of CO2, SO2 and NO x emissions factors in Iran’s thermal power plants. Energy 35, 2992–2998 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Srivastava, R. K., Hall, R. E., Khan, S., Culligan, K. & Lani, B. W. Nitrogen oxides emission control options for coal-fired electric utility boilers. J. Air Waste Manage. Assoc. 55, 1367–1388 (2005).

    CAS  Article  Google Scholar 

  69. 69.

    Lei, Y., Zhang, Q., He, K. B. & Streets, D. G. Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmos. Chem. Phys. 11, 931–954 (2011).

    CAS  Article  Google Scholar 

  70. 70.

    Klimont, Z. et al. Modelling Particulate Emissions in Europe: a Framework to Estimate Reduction Potential and Control Costs IIASA interim report (IIASA, 2002).

  71. 71.

    Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Modell. Softw. 26, 1489–1501 (2011).

    Article  Google Scholar 

Download references


This work was supported by the National Science Foundation of China (41625020), China’s National Basic Research Program (2014CB441301), and the National Key R&D program (2016YFC0201506). Q.Z. and K.H. are supported by the Collaborative Innovation Center for Regional Environmental Quality. D.G. acknowledges support from the ational Science Foundation of China (41629051). The India component of the work was funded by the Office of Biological and Environmental Research in the US Department of Energy, Office of Science, for which Z.L. and D.G.S. are grateful to Ashley Williamson and Bob Vallario.

Author information




Q.Z. designed the research. D.T., F.L., B.Z., G.G., T.X., M.L. and C.H. performed the research. Z.L. and D.G.S. provided data for Indian power plants. D.T., S.J.D. and Q.Z. interpreted data. D.T., S.J.D. and Q.Z. wrote the paper with inputs from all co-authors.

Corresponding authors

Correspondence to Qiang Zhang or Steven J. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–8, Supplementary References.

Supplementary Tables

Supplementary Tables 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Zhang, Q., Davis, S.J. et al. Targeted emission reductions from global super-polluting power plant units. Nat Sustain 1, 59–68 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing