Abstract
The most pressing issue now is to improve the cooling process in an electrical power system. On the other hand, nanofluids are regarded as reliable coolants owing to their exceptional characteristics, which include excellent thermal conductivity, a faster heat transfer rate, and higher critical heat flux. Considering these fascinating properties of nanofluid, this research looks at the flow of mineral oil based Maxwell nanofluid with convective heat. Moreover, introducing heat radiation, viscous dissipation and Newtonian heating add to the novelty of the problem. The coupled partial differential equations supported by the accompanying boundary conditions are numerically solved using an implicit finite difference method. The simulations are carried out using MATLAB software, and the obtained results are illustrated graphically. It is observed that the velocity of fluid increases concernign the relaxation time parameter but decreases against fractional derivative.
Similar content being viewed by others
Introduction
The curiosity to explore the flow and heat transfer process in fluids obeying nonNewtonian rheological paradigms is increasing due to the extensive scope for industrial and technical applications; Fossil fuel burning, oilwell drilling, solidification processes, and material plasticizing for manufacturing parts are only a few examples. Over the last few decades, a number of approximate and selfconsistent nonNewtonian rheological models have been presented, as no single model can include the characteristics of nonNewtonian fluids. Differential, rate, and integral models are the three types of models. In particular, ratetype fluid models such as Maxwell, OldroydB, or Burgers fluids commonly forecast stress relaxation in polymer processing. Maxwell^{1} devised a fluid model to represent the elastic and viscous behavior of air at first. It is now commonly used to describe the behavior of a wide range of viscoelastic fluids, from polymers to the Earth’s mantle^{2}.
Fractional calculus and its applications have grown in popularity and relevance over the last few decades, owing to its applicability in a wide range of scientific and technical fields. The fractional calculus is wellknown for its suitability in describing memory effects and material hereditary features. In order to define frequencydependent complex materials, fractional calculus was introduced to express the constitutive relation of Maxwell viscoelastic fluid. Moreover, fractional calculus theory has been utilized to describe thermoelasticity and heat conduction due to the global dependency of fractional operators^{3}. Bagley and Torvik^{4} devised a link between molecular theories that predict the macroscopic behavior of certain viscoelastic media and an empirically developed fractional calculus approach to viscoelasticity. Makris et al.^{5} suggested a generalised Maxwell model with a fractional derivative, in which fractionalorder derivatives supplanted the firstorder derivatives of the Maxwell model. Moreover, the anomalous Maxwell model produces an algebraically decreasing stress relaxation modulus that agrees well with experimental data^{6}. A timefractional Maxwell fluid model has been numerically investigated by Hanif^{7}. Jamshed addressed the entropy generation in Maxwell fluid flow in the presence of a magnetic field^{8}.
In the last decade, the dispersion of nanoparticles in a base fluid has been considered to alter the characteristics of the fluid to optimize its thermal performance; Choi and Eastman initially proposed this idea^{9}. The resulting fluid is coined as nanofluid in the literature^{10,11,12,13}. Nanofluids have a wide range of applications, including pharmaceutical procedures, nanodrug delivery, heating/cooling appliances, microelectronics, nuclear power plants and fuel cells, to name a few. However, the effectiveness and application of a nanofluid depend on the nanoparticles suspended in the base fluid. Nanoparticles are a broad category of materials that include particulate substances with a minimum dimension of 100 nm, classified into several groups depending on their morphology, size, and chemical characteristics. Some of the most wellknown classes of nanoparticles, based on physical and chemical features, include carbonbased, metal, ceramic, and semiconductor nanoparticles^{14}. Carbon nanotubes (CNTs) are among the most common types of carbonbased nanoparticles and desirable materials in the manufacture of electrochemical devices because of their superior thermal and electrical conductivities, chemical and mechanical stability, featherweight, and consistency. Singlewalled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) are two types of CNTs. In comparison to other nanoparticles, the heat conduction of nanofluids increased sixfold in the presence of CNTs^{15}. In addition to that, CNTs have an extremely high thermal conductivity (2000–6000 W/m K), which is an order of magnitude higher than metallic or oxide nanomaterials like aluminum (237 W/m K) and aluminum oxide (40 W/m K), which are typically utilized as heat transfer enhancers in nanofluids^{16}. Nanofluids with CNTs have substantially more excellent thermal properties such as heat transfer coefficient, thermal conductivity, and boiling heat flux when compared to their base fluids and nanofluids containing other types of nanomaterials^{17,18,19}. The thermal management of electrical transformers is a critical in the electric power generating and distribution business to optimize system efficiency while maintaining safe operation. Oil, which might be synthetic or mineral, is used inside the electrical transformer to separate the internal components electrically. This oil also serves as a cooling medium for the transformer. In this perspective, increasing the oil dielectric strength and its capacity to transport heat from the transformer winding to the transformer shell via natural convection mechanisms might improve the performance of electrical transformers. Bearing this in mind, Fontes et al.^{20} experimented with analyzing the dynamic viscosity, thermal conductivity, and breakdown voltage of mineral oil based nanofluid for electrical transformers. According to their results, dynamic viscosity and thermal conductivity increased with increased particle concentration whereas breakdown voltage decreased with the addition of nanoparticles.
The purpose of this research is to scrutinize a twodimensional flow of Maxwell nanofluid due to a constant pressure gradient. To the authors’ best knowledge, the interaction of MWCNTs inside mineral oil based Maxwell fluid with a sudden pressure force has not been investigated. Furthermore, when the qualities mentioned earlier are combined with thermal radiation, viscous dissipation, and Newtonian heating, this investigation becomes unique. The numerical solutions of the formulated model are generated in MATLAB using Crank–Nicolson finite difference assisted by timefractional Caputo derivative.
Governing equations
The Maxwell model depicts one of the most basic linear viscoelastic fluids with the constitutive equation:
where \({\mathbb {T}}\) is the well known Cauchy stress tensor, \({\mathbb {P}}\) is the hydrostatic pressure, \({\mathbb {I}}\) is the identity tensor and \({\mathbb {S}}\) is the extra stress tensor, defined by the relationship:
Here V is the velocity field, \(\mu\) is the dynamic viscosity, and \(\lambda\) is the relaxation time parameter. We shall also define the extra stress tensor \({\mathbb {S}}\)
Fractional calculus has been successfully applied to the description of complicated dynamics such as relaxation, wave, and viscoelastic behavior in recent decades. Replacing the first derivative in the Maxwell fluid model with a fractional derivative of order \(\alpha\) is a simple approach for adding fractional derivatives into models of linear viscoelasticity. Hence the fractional form of constitutive relation (2) can be written as:
where \(\dfrac{\partial ^{\alpha } V}{\partial t^{\alpha }}\) is Caputo timefractional derivative with order \(\alpha\) such that \(0\le \alpha <1\). Following definition is required in the sequel.
Definition 1 Let \({\mathfrak {n}}\in {\mathbb {N}}\) and \(\alpha \in {\mathbb {C}}\) with \(\Re (\alpha )>0\) such that \({\mathfrak {n}}1<\alpha <{\mathfrak {n}}\). Then for f in \({\mathbb {C}}^{{\mathfrak {n}}}({\mathbb {R}})\), the timefractional Caputo derivative of order \(\alpha\) is given by^{21}:
where \(\Gamma (\cdot )\) is the gamma function, defined by
The flow and heat transfer of an incompressible Maxwell nanofluid are governed by the following equations:
where \(\rho\) is the density of the fluid.
here \(C_{p}\) is the specific heat at constant pressure and k is the thermal conductivity.
Problem description
Assume that the fluid is confined between two sidewalls of an infinite plate in the xzplane. A pressure gradient is applied along the xaxis, which initiates the mainstream flow. As a consequence, the velocity field takes on the following form:
along with the extra stress tensor:
It is simple to verify that the velocity field of the aforementioned form meets the incompressibility criterion automatically. The momentum and energy Eqs. (8) and (9), respectively, reduced to
Furthermore, using Eqs. (4), (10) and (11), the extra stress tensor can be computed explicitly, yielding the relations:
Multiplying Eq. (12) with \(\bigg (1+\lambda ^{\alpha }\dfrac{\partial ^{\alpha }}{\partial t^{\alpha }}\bigg )\) and utilizing Eq. (14), we arrived at
In conjunction with thermal radiation, the energy Eq. (13) yields to
where \(q_{r}\) represents radiative heat flux and formulated by Rosseland approximation as^{22,23}
Here \(\sigma _{b}\) is the Stefan–Boltzman coefficient and \(k_{b}\) represents the absorption coefficient. Assume that the difference \(TT_{\infty }\) inside the flow domain is small enough such that \(T^{4}\) can be expanded about \(T_{\infty }\) using the Taylor series as
The higher orders are ignored since the temperature difference in the approximation is small enough, yielding in
Invoking the approximation of \(T^{4}\) in Eq. (17) results in^{24}
Differentiating Eq. (20) w.r.t y and incorporating the resultant derivative in Eq. (16) yields to
Flow and heat transfer modeling of nanofluid
There are several types of heat transfer modeling available today, including dispersion model, particle migration, singlephase and twophase models^{25}. In this research, we considered singlephase model by replacing traditional fluid's thermal and physical properties with the corresponding properties of nanofluid. Consequently, Eqs. (15) and (21) can be modified as
The fluid is initially at rest and at ambient temperature. Therefore, applying the following initial conditions is reasonable. For \(t<0, \, (y,z) \in [0,\infty ) \times [0,z_{max}],\)
We impose a noslip velocity and Newtonian heating conditions along the plate and the walls so that:
The natural far field conditions are
Furthermore, the flow is propelled by a constant pressure gradient in the xdirection
where \({\mathbb {H}}\) denotes the Heaviside function, which is defined as follows
Thermal and physical properties of nanofluid
Let \(\varphi\) represents the volume fraction of nanomaterial, and the subscripts f and nf refer to base fluid and nanofluid, then thermal and physical properties of nanofluid are defined as follows
Density of nanofluid
The density of an object is defined as the mass divided by the volume of the object. The mathematical expression for density of nanofluid is given by^{26,27}
Specific heat capacity of nanofluid
The amount of energy required to raise the temperature of 1 g of a substance by 1 \(^{\circ }\)C is known as the specific heat of a substance. The mathematical expression in terms of base fluid and nanoparticle is defined as
Later, Xuan and Roetzel amended this correlation by considering thermal equilibrium between nanomaterial and the liquid phase and modified the above equation by taking the density into account^{28,29,30}
Thermal conductivity of nanofluid
The ability of a material to conduct heat is referred to as thermal conductivity. It is an essential factor for determining the heat transfer capacity in a thermal system. Wellknown Maxwell theory for the effective thermal conductivity of a liquid with a dilute suspension of spherical particles is given as^{31,32}
Later, Hamilton and Crosser extended Maxwell model by taking shape factor of nanoparticle into account. Their proposed model is^{33,34,35}
where \(n=3/\varpi\) is the shape factor with sphericity \(\varpi\). Note that Hamilton Crosser model reduces to Maxwell model for \(\varpi =1\). Xue^{36} claimed that the existing models are unable to reveal the influence of CNT space distribution on thermal conductivity. In general, CNTs are considered as rotating elliptical nanoparticles with a very large axial ratio, which ensures that current models might not work on CNTbased composites. According to Xue, the thermal conductivity for model CNTbased composites is
Dynamic viscosity of nanofluid
Dynamic viscosity is a measure of internal resistance to flow. Einstein’s formula for calculating the effective viscosity \(\mu _{nf}\) of a linearly viscous fluid with viscosity \(\mu _{f}\) and a dilute suspension of small spherical particles is
Einstein’s equation was extended by Brinkman^{37,38} as
Xuan et al.^{39} performed an experiment to measure the apparent viscosity of the oil–water and water–copper nanofluid at temperatures ranging from 20 to 59 \(^{\circ }\)C. The findings of the experiment show that Brinkman’s theory is fairly accurate^{28}.
Nondimensional flow and heat transfer model
To comprehend the physics of the presented problem, nondimensional representation is required. Therefore, we introduced the following nondimensional parameters
Incorporating the nondimensional parameters (37) in Eqs. (22), (23), (24), (25) and (26) yield to following (after removing the bars for simplicity)
subject to the initial and boundary conditions
given that
Numerical analysis
Define \(t_{k}=k{\mathfrak {h}}, k=0, 1,\ldots ,{\mathfrak {n}}\), \(y_{i}=i{\mathfrak {p}}, i=1,2,\ldots , {\mathfrak {r}}\), \(z_{j}= j{\mathfrak {q}}, j=1,2,\ldots , {\mathfrak {s}}\), where \({\mathfrak {h}}=t_{\mathfrak {f}}/n\) is the time step, \({\mathfrak {p}}=y_{max}/{\mathfrak {r}}\) and \({\mathfrak {q}}=z_{max}/{\mathfrak {s}}\) are the mesh size in (y, z) direction. The discrete forms of Eqs. (38), (39) and (40) are obtained using the Crank–Nicolson method. It is a finite difference approach that is not only unconditionally stable, but also has fast convergence and accuracy^{40}. Moreover, the fractionaltime derivatives are evaluated using Caputo timefractional derivative. The discrete momentum equation is
where \({\mathfrak {b}}_{{\mathfrak {m}}}=\big ({\mathfrak {a}}_{{\mathfrak {m}}}{\mathfrak {a}}_{{\mathfrak {m}}1}\big )\) with \({\mathfrak {a}}_{{\mathfrak {m}}}=({\mathfrak {m}}+1)^{1\alpha }{\mathfrak {m}}^{1\alpha }\). The discrete form of Eq. (39) is given by
Results and discussion
Theoretical aspects of MWCNTs on the flow and heat transfer of mineral oil with conjugate boundary conditions will be discussed in this section. The numerical solutions for velocity and temperature are derived using a newly devised Crank–Nicolson finite difference approach in conjunction with L\(_1\) algorithm. On flow and heat transfer, the impacts of MWCNTs volume fraction \(\varphi\), fractional derivative parameter \(\alpha\), relaxation time parameter \(\lambda\), radiation parameter Rd, viscous dissipation parameter \({\mathscr {E}}\), and conjugate heat parameter \(\gamma\) are investigated. The following numerical values for the parameters are assumed to be fixed: \(\varphi =0.01, \alpha =0.5, \lambda =0.1, Rd=0.5, {\mathscr {E}}=0.1,\) and \(\gamma =0.1\), unless otherwise stated. The parameter ranges shown in the diagrams are as follows: \(0\le \varphi \le 0.04, 0.1<\alpha <0.9, 0\le \lambda\le 0.7 , 0\le Rd\le 1.3, 0\le {\mathscr {E}}\le 2, 0.1\le \gamma \le 2\). The thermal physical properties of mineral oil and MWCNTs are provided in Table 1.
The trend of velocity for different parameters is depicted in Figs. 1, 2 and 3. The axial velocity pattern for various fractional derivative parameter \(\alpha\) is shown in Fig. 1. It is worth noting that when \(\alpha\) gets higher, the amplitude of the velocity gets smaller. Moreover, the obtained surface plot resembles a Gaussian distribution or a traditional heat kernel graph with increasing standard deviation when the fractional derivative power has increased. For larger estimates of relaxation time parameter \(\lambda\), an increase in fluid velocity is visualized, see Fig. 2. The influence of nanotube volume fraction \(\varphi\) is ascertained in Fig. 3. As illustrated in this graph, the velocity of fluid decreases as the value of \(\varphi\) increases. Generally, raising the volume concentration of nanomaterials inside a fluid increases its viscosity. As a result, the velocity of the fluid substantially reduces.
The trend of temperature profile for several parameters are illustrated in Figs. 4, 5, 6, 7, 8 and 9. The effects of the thermal radiation parameter Rd on the temperature distribution are outlined in Fig. 4. It is observed that, with higher Rd values, more heat is generated. As a result, a rise in the fluid’s temperature is perceived. The influence of dissipation parameter \({\mathscr {E}}\) on the temperature distribution is portrayed in Fig. 5. The parameter \({\mathscr {E}}\) is used to determine the effect of selfheating due to the dissipation properties. At high flow rates, the thermal field in a fluidic framework is swamped by the temperature gradient present in the framework and the effects of dissipation due to internal friction. As seen in Fig. 5, the temperature field is more significant for higher values of \({\mathscr {E}}\). The temperature profile improves because more heat energy is stored in the fluid due to friction forces as \({\mathscr {E}}\) increases. Figure 6 is provided to visualize the effect of conjugate heat parameter \(\gamma\) on temperature distribution of Maxwell nanofluid. The temperature is increased when \(\gamma\) is increased. Physically, it was expected because more heat is transferred from the heated surface to the cold fluid. As a result, the temperature of the fluid rises.
By fixing the ycoordinate in Figs. 7, 8 and 9, a onedimensional temperature profile is drawn for MWCNTS/mineral oil and SWCNTs/mineral oil. The same conclusions as the surface plots can be drawn; however, the temperature of fluid with SWCNTs is more significant than MWCNTs.
Conclusions
The mineral oil base nanofluid flow with MWCNTs accompanied by the radiative heat, viscous dissipation and Newtonian heating is deliberated numerically. A finite difference method is used to solve the formulated mathematical problem, and the graphical results are generated in MATLAB software. The following are the most important findings of this research:

Lower velocity is associated with nanomaterial volume concentration.

The relaxation time parameter corresponds to higher velocity flow.

Friction forces generated by the viscous dissipation factor increase the temperature.

The temperature of Maxwell nanofluid significantly raises against the conjugate heat transfer parameter.
Abbreviations
 \(\alpha\) :

Fractionalorder derivative
 \(\gamma\) :

Conjugate heat parameter
 \(\lambda\) :

Relaxation time
 \({\mathfrak {h}}\) :

Time step
 \(\mu\) :

Dynamic viscosity
 \(\nu\) :

Kinematic viscosity
 \(\rho\) :

Density
 \(\sigma _{b}\) :

Stefan Blotzman coefficient
 \(\varphi\) :

Nanotube volume fraction
 \(\varpi\) :

Sphericity
 \({\mathbb {P}}\) :

Pressure gradient
 \({\mathbb {S}}\) :

Extra stress tensot
 \({\mathscr {E}}\) :

Viscou dissipation
 \(k\) :

Thermal conductivity
 \(k_{b}\) :

Absorption coefficient
 \(Rd\) :

Thermal radiation
 \(T\) :

Temperature
 \(V\) :

Velocity
 \({\mathbb {H}}\) :

Heaviside function
 \({\mathbb {I}}\) :

Identitiy matrix
 \({\mathfrak {p}}\) :

Mesh size in y direction
 \({\mathfrak {q}}\) :

Mesh size in z direction
 \(C_{p}\) :

Specific heat capacity
 \(Pr\) :

Prandtl number
 \(q_{r}\) :

Radiative heat flux
 \(t\) :

Time
 \(f\) :

Base fluid
 \(i\) :

Regularly spaced grid size in y direction
 \(j\) :

Regularly spaced grid size in y direction
 \(k\) :

Time level
 \(nf\) :

Nanofluid
 \(s\) :

Nanoparticles
References
Maxwell, J. C. Iv. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond.https://doi.org/10.1098/rstl.1867.0004 (1867).
Karra, S., Prŭša, V. & Rajagopal, K. On Maxwell fluids with relaxation time and viscosity depending on the pressure. Int. J. NonLinear Mech. 46, 819–827. https://doi.org/10.1016/j.ijnonlinmec.2011.02.013 (2011).
Shen, M., Chen, S. & Liu, F. Unsteady MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid with Cattaneo heat flux and different particle shapes. Chin. J. Phys. 56, 1199–1211. https://doi.org/10.1016/j.cjph.2018.04.024 (2018).
Bagley, R. L. & Torvik, P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210. https://doi.org/10.1122/1.549724 (1983).
Makris, N., Dargush, G. & Constantinou, M. Dynamic analysis of generalized viscoelastic fluids. J. Eng. Mech. 119, 1663–1679. https://doi.org/10.1061/(ASCE)07339399(1993)119:8(1663) (1993).
HernándezJiménez, A., HernándezSantiago, J., MaciasGarcıa, A. & SánchezGonzález, J. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym. Test. 21, 325–331. https://doi.org/10.1016/S01429418(01)000927 (2002).
Hanif, H. A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid. Math. Comput. Simul.https://doi.org/10.1016/j.matcom.2021.07.024 (2021).
Jamshed, W. Numerical investigation of MHD impact on Maxwell nanofluid. Int. Commun. Heat Mass Trans. 120, 104973. https://doi.org/10.1016/j.icheatmasstransfer.2020.104973 (2021).
Choi, S. U. & Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Tech. Rep., Argonne National Lab., IL (United States) https://www.osti.gov/biblio/196525 (1995).
Jamshed, W. Thermal augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: A solar energy application. Energy Environ.https://doi.org/10.1177/0958305X211036671 (2021).
Hanif, H., Khan, I. & Shafie, S. MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Physica Scr. 94, 125208. https://doi.org/10.1088/14024896/ab36e1 (2019).
Ramzan, M. et al. Von Karman rotating nanofluid flow with modified Fourier law and variable characteristics in liquid and gas scenarios. Sci. Rep. 11, 1–17. https://doi.org/10.1038/s4159802195644w (2021).
Redouane, F. et al. Galerkin finite element study for mixed convection (TiO_{2}–SiO_{2}/water) hybridnanofluidic flow in a triangular aperture heated beneath. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s4159802102216z (2021).
Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 (2019).
Ramzan, M. et al. Numerical simulation of 3D condensation nanofluid film flow with carbon nanotubes on an inclined rotating disk. Appl. Sci. 10, 168. https://doi.org/10.3390/app10010168 (2020).
Murshed, S. S. & De Castro, C. N. Superior thermal features of carbon nanotubesbased nanofluidsa review. Renew. Sustain. Energy Rev. 37, 155–167. https://doi.org/10.1016/j.rser.2014.05.017 (2014).
Amrollahi, A., Hamidi, A. & Rashidi, A. The effects of temperature, volume fraction and vibration time on the thermophysical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19, 315701. https://doi.org/10.1088/09574484/19/31/315701/meta (2008).
Garg, P. et al. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multiwall carbon nanotubebased aqueous nanofluids. Int. J. Heat Mass Transf. 52, 5090–5101. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029 (2009).
Liu, Z.H., Yang, X.F. & Xiong, J.G. Boiling characteristics of carbon nanotube suspensions under subatmospheric pressures. Int. J. Therm. Sci. 49, 1156–1164. https://doi.org/10.1016/j.ijthermalsci.2010.01.023 (2010).
Fontes, D. H., Ribatski, G. & Bandarra Filho, E. P. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage ac of nanofluids of carbon nanotubes and diamond in transformer oil. Diam. Relat. Mater. 58, 115–121. https://doi.org/10.1016/j.diamond.2015.07.007 (2015).
Saqib, M. et al. Heat transfer in MHD flow of Maxwell fluid via fractional Cattaneo–Friedrich model: A finite difference approach. Comput. Mater. Contin. 65, 1959–1973. https://doi.org/10.32604/cmc.2020.011339 (2020).
Jamshed, W. et al. Thermal growth in solar water pump using Prandtl–Eyring hybrid nanofluid: A solar energy application. Sci. Rep. 11, 1–21. https://doi.org/10.1038/s41598021981038 (2021).
Jamshed, W. & Nisar, K. S. Computational singlephase comparative study of a Williamson nanofluid in a parabolic trough solar collector via the Keller box method. Int. J. Energy Res. 45, 10696–10718. https://doi.org/10.1002/er.6554 (2021).
Jamshed, W. et al. A numerical frame work of magnetically driven Powell–Eyring nanofluid using single phase model. Sci. Rep. 11, 1–26. https://doi.org/10.1038/s41598021960400 (2021).
Ali, A. R. I. & Salam, B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl. Sci. 2, 1–17. https://doi.org/10.1007/s42452020034271 (2020).
Hanif, H., Khan, I. & Shafie, S. Heat transfer exaggeration and entropy analysis in magnetohybrid nanofluid flow over a vertical cone: A numerical study. J. Therm. Anal. Calorim.https://doi.org/10.1007/s1097302009256z (2020).
Hussain, S. M. & Jamshed, W. A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method. Int. Commun. Heat Mass Transf. 129, 105671. https://doi.org/10.1016/j.icheatmasstransfer.2021.105671 (2021).
Xuan, Y. & Roetzel, W. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707. https://doi.org/10.1016/S00179310(99)003695 (2000).
Hanif, H., Khan, I. & Shafie, S. A novel study on timedependent viscosity model of magnetohybrid nanofluid flow over a permeable cone: Applications in material engineering. Eur. Phys. J. Plus 135, 1–26. https://doi.org/10.1140/epjp/s1336002000724x (2020).
AlKouz, W. et al. Galerkin finite element analysis of magneto twophase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598021958462 (2021).
Maxwell, J. C. A Treatise on Electricity and Magnetism Vol. 1 (Clarendon Press, Berlin, 1873).
Hanif, H., Khan, I. & Shafie, S. A novel study on hybrid model of radiative Cu–Fe\(_3\)O\(_4\)/water nanofluid over a cone with PHF/PWT. Eur. Phys. J. Spec. Top.https://doi.org/10.1140/epjs/s1173402100042y (2021).
Hamilton, R. L. & Crosser, O. Thermal conductivity of heterogeneous twocomponent systems. Ind. Eng. Chem. Fundam. 1, 187–191. https://doi.org/10.1021/i160003a005 (1962).
Hanif, H., Khan, I., Shafie, S. & Khan, W. A. Heat transfer in cadmium telluride–water nanofluid over a vertical cone under the effects of magnetic field inside porous medium. Processes 8, 7. https://doi.org/10.3390/pr8010007 (2020).
Shahzad, F. et al. Flow and heat transport phenomenon for dynamics of Jeffrey nanofluid past stretchable sheet subject to Lorentz force and dissipation effects. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598021022123 (2021).
Xue, Q. Model for thermal conductivity of carbon nanotubebased composites. Physica B Condens. Matter 368, 302–307. https://doi.org/10.1016/j.physb.2005.07.024 (2005).
Brinkman, H. C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–571. https://doi.org/10.1063/1.1700493 (1952).
Jamshed, W., Nisar, K. S., Ibrahim, R. W., Shahzad, F. & Eid, M. R. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: A solar thermal application. J. Mater. Res. Technol. 14, 985–1006. https://doi.org/10.1016/j.jmrt.2021.06.031 (2021).
Xuan, Y., Li, Q., Xuan, Y. & Li, Q. Experimental research on the viscosity of nanofluids. Report of Nanjing University of Science and Technology (1999).
Hanif, H. A finite difference method to analyze heat and mass transfer in kerosene based \(\gamma\)oxide nanofluid for cooling applications. Physica Scr.https://doi.org/10.1088/14024896/ac098a (2021).
Acknowledgements
The authors would like to acknowledge the Ministry of Higher Education Malaysia and Research Management CentreUTM, Universiti Teknologi Malaysia (UTM) for financial support through vote numbers FRGS/1/2019/STG06/UTM/02/22 and 08G33.
Author information
Authors and Affiliations
Contributions
H.H. formulated the problem, solved the problem and plotted the graphs. S.S. discussed the results. H.H. wrote the manuscript. S.S. proofread the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hanif, H., Shafie, S. Interaction of multiwalled carbon nanotubes in mineral oil based Maxwell nanofluid. Sci Rep 12, 4712 (2022). https://doi.org/10.1038/s4159802207958y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s4159802207958y
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.