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Geographically weighted machine 
learning model for untangling 
spatial heterogeneity of type 2 
diabetes mellitus (T2D) prevalence 
in the USA
Sarah Quiñones1, Aditya Goyal2 & Zia U. Ahmed2*

Type 2 diabetes mellitus (T2D) prevalence in the United States varies substantially across spatial and 
temporal scales, attributable to variations of socioeconomic and lifestyle risk factors. Understanding 
these variations in risk factors contributions to T2D would be of great benefit to intervention and 
treatment approaches to reduce or prevent T2D. Geographically-weighted random forest (GW-RF), a 
tree-based non-parametric machine learning model, may help explore and visualize the relationships 
between T2D and risk factors at the county-level. GW-RF outputs are compared to global (RF and 
OLS) and local (GW-OLS) models between the years of 2013–2017 using low education, poverty, 
obesity, physical inactivity, access to exercise, and food environment as inputs. Our results indicate 
that a non-parametric GW-RF model shows a high potential for explaining spatial heterogeneity of, 
and predicting, T2D prevalence over traditional local and global models when inputting six major risk 
factors. Some of these predictions, however, are marginal. These findings of spatial heterogeneity 
using GW-RF demonstrate the need to consider local factors in prevention approaches. Spatial analysis 
of T2D and associated risk factor prevalence offers useful information for targeting the geographic 
area for prevention and disease interventions.

Type 2 diabetes mellitus (T2D), a common and potentially preventable disease, has become a public health 
concern and imposes significant health and economic burdens in the United  States1. An estimated 34.1 million 
adult Americans had T2D in 2018, approximately 13% of the  population2. T2D is a leading cause of death in the 
United States with a crude death rate of 24.7 per 100,000  persons3. National T2D prevalence is predicted to rise 
to approximately 14% and 18% in 2030 and 2060,  respectively4. T2D prevalence varies substantially between 
and within states in the US, ranging from 2.2% (1.3–3.2%) to 28.7% (15.8–44.2%) in  20175. State- and county-
level variations in T2D prevalence reveal many shortcomings in individual-level considerations of diabetes risk 
factors and intervention strategies. The spatial modeling of the association between T2D prevalence and its risk 
factors and establishing how this association varies over space is important for identifying geographical areas 
that would benefit from specific efforts and resources to reduce the T2D burden.

A number of spatial modeling studies have demonstrated associations between county-level T2D prevalence 
and several socioeconomic and lifestyle factors such as  poverty1,6,7,  obesity8–10, physical  inactivity1,9, and food 
 environment11–13. Spatial analysis of T2D prevalence and many of these risk factors offers useful information 
in health care promotion programs and public policy  decisions14,15. Geographically weighted ordinary least 
squares regression (GW-OLS), an extension of linear  regression16,17, has been widely used to explore geographic 
variations in risk factors and diabetes  prevalence10,18–20. However, GW-OLS is not appropriate to estimate the 
relationships between predictors and target variables when their relationship is non-linear, and local multicol-
linearity among the predictors  exists21, as is the case with T2D. The relationship between risk factors and T2D 
prevalence is complicated and not always  linear22. It is necessary to deal with the nonlinear situation in a local 
regression model to explore the spatial variation of T2D prevalence in relation to risk factors.
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The geographically weighted random forest (GW-RF), a tree-based non-parametric ensemble model, has 
been recently developed to address the limitations of the GW-OLS model and improve predictive performance 
over a non-geographically weighted random forest (RF)  model23. The main idea of GW-RF is similar to that of 
the GW-OLS  model17, in which the model is calibrated locally rather than globally. The GW-RF does not need 
to consider multicollinearity and can analyze all independent variables without  screening24 and may provide 
superior predictive power and evaluation of associations between independent and dependent spatial variables 
compared to the GW-OLS23. However, applying a non-parametric GW-RF model to explain spatial heterogeneity 
between disease outcome and risk factors is still lacking, and further research comparing GW-OLS and GW-RF 
is therefore warranted.

To our knowledge, no studies have assessed the advantages of GW-RF to explore non-stationarity in the 
relationships between county-level T2D prevalence and risk factors. This study applied the GW-RF model to 
explore and visualize non-stationarity in the relationship between T2D and selected risk factors. Our objectives 
were (i) to explore the local associations between T2D prevalence and risk factors for targeting the geographic 
area for prevention and interventions and (ii) to evaluate the predictive performance of GW-RF compared to 
traditional local and global models.

Materials and methods
Data. County-level age-adjusted adult (> 18  years) T2D, obesity, and physical inactivity prevalence from 
years 2013 to 2017 were obtained from United States Diabetes Surveillance System (USDSS)5. Data from the 
CDC’s Behavioral Risk Factor Surveillance System (BRFSS) and the US Census Bureau’s Population Estimates 
Program were used to estimate the county-level prevalence of diabetes, obesity, and physical  inactivity5,25. The 
BRFSS is a national, monthly administered telephone survey that collects data at the state-level on disease risk 
factors and preventative health behaviors. The BRFSS utilizes separate sampling procedures for landline tel-
ephone respondents and for cellular telephone  respondents5. Disproportionate stratified sampling is used for the 
landline sample for all years of data in this analysis. Telephone numbers are drawn from two strata of telephone 
number density: (1) high density or (2) medium density. The landline sampling ratio of high to low-density 
residential numbers in the BRFSS is 1:1.5. Disproportionate stratified sampling is more efficient than simple 
random sampling. The cellular telephone sample is selected randomly from a sampling frame of confirmed area 
codes and prefix combinations. Cellular respondents are randomly selected with an equal probability of being 
selected into the sample. Landline telephone numbers are sampled by the BRFSS based on sub-state geographic 
regions to account for small-area differences within states. The BRFSS two-step weighting process of design 
weighting followed by iterative proportional fitting is undertaken to remove bias. Summary data quality reports 
released with the BRFSS data each year show median response rates between 40.5 and 48.7% between 2014 
and 2016 for landline and cellular telephone responses. A positive answer to the question determined diabetes 
prevalence in this survey, "Has a doctor ever told you that you have diabetes?" Women who reported diabetes 
during pregnancy were omitted. Age-adjusted percentages of diagnosed diabetes among adults 18 years or older 
are presented at the county level. Bayesian multilevel modeling was used to estimate diabetes, obesity, and physi-
cal inactivity prevalence at the county-level26,27. There is an expectation of 5% disagreement in the model due 
to sampling variability. Estimates of county-level prevalence were age-adjusted using the 2000 United States 
standard population using the following age groups: 20–44, 45–64, and 65 and  older28. Since T2D accounts for 
90–95% of all types of diabetes, we have used T2M to represent USDSS county-level diabetes prevalence.

In the BRFSS survey, respondents were also asked, "During the past month, other than your regular job, did 
you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for 
exercise?" If the response was "no," respondents were considered physically inactive. Obesity was determined by 
a body mass index of 30 kg/m2 or higher, which was calculated using the self-reported height and weight of the 
participants. The prevalence of both obesity and physical inactivity was defined as the age-adjusted percentage 
of adults 20 years or older that were considered obese or physically inactive in a given county.

County-level, age-adjusted poverty data (% population below poverty level) were obtained from the US 
Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program, which provides annual estimates 
of income and poverty for all school districts, counties, and states. A regression model was used to predict the 
number of people in poverty using single-year county-level observations from the American Community Survey 
(ACS) as the dependent variable, and administrative records and census data as the  predictors29.

The percentage of the county population who have some post-secondary education was obtained from County 
Health  Ranking30. The County Health Rankings use 5-year averages of the ACS data to get measures of social and 
economic factors. ACS is an ongoing survey program of the Census Bureau that provides vital information about 
population and housing information about the country. These percentages were subtracted from 100 to calcu-
late the percentage of individuals in a given county with no higher education—our measure of poor education.

Food environment index data were retrieved by County Health Rankings from the United States Department 
of Agriculture (USDA) Food Environment Atlas and the Map the Meal Gap from Feeding America for the years 
2013–201731,32. The Food Environment Index ranges from 0 (worst) to 10 (best) and equally weighs two indica-
tors of the food environment: limited access to healthy foods and food insecurity. These two indicators provide 
county-level healthy food access and availability measures based on store/restaurant proximity, food prices, food 
and nutrition assistance programs, and community  characteristics33.

Access to exercise opportunities is a measure of the percentage of individuals in a county living within 
reasonable proximity to a location conducive for physical  activity34. Individuals are considered to have access 
to exercise opportunities if they: reside in a census block that is within a half-mile of a park, reside in an urban 
census block that is within one mile of a recreational facility, or reside in a rural census block that is within three 
miles of a recreational facility. Five years (2012–2016) of data of the percentage of the population with access 
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to exercise were obtained from County Health  Rankings33. County Health Rankings use the North American 
Information Classification System (NAICS) which was then combined with Business Analyst data in  ArcGIS35, 
Delorme map data, ESRI, and US Census Tigerline files.

Exploratory data analysis. Hot spot analysis (Getis‑Ord Gi*). We calculated the Getis-Ord Gi* statistic 
to identify hot spots (high values) and cold spots (low values) for diabetes in ArcGIS Spatial Statistics  Tools35. 
The estimated z-scores and p-values calculated in each county indicate areas with either high or low-value clus-
ters. Larger z-scores (statistically significant positive z-scores) show more intense clustering of high values, and 
smaller z-scores (statistically significant negative z-scores) indicate more intense clustering of low values.

Bivariate Local Moran I. To explore the degree of linear association (positive or negative) between T2D preva-
lence and risk factors at a given location and the average of another variable at neighboring areas (spatial lag), we 
estimated bivariate Local Moran I (LMI) statistics, which provide a classification of four types of spatial autocor-
relation. LMI does not control the correlation between variables at each location, but instead identifies counties 
with significant clusters (at α = 0.05) for T2D prevalence and any risk factors at the same  time36.

Geographically weighted correlation. To investigate local relationships between T2D prevalence and risk fac-
tors, we calculated geographically weighted (GW) Pearson’s correlation coefficients using the methods described 
by  Brunsdon16. The GW correlation coefficients provide a preliminary assessment of non-stationarity relation-
ship between the dependent and an independent variable of a GW  regression37. We used "bi-square kernels" with 
adaptive distance to select the optimum neighbor size. The "GWModel"  package38 in the R statistical computing 
 environment39 was used for this analysis.

Geographically weighted model. Geographically weighted OLS regression (GW‑OLS). The GW-OLS 
involves spatial regression techniques increasingly used when data are not described well by a global  model17. 
GW-OLS explores spatial heterogeneity in the relationships between variables where non-stationarity exists such 
that locally weighted regression coefficients move away from their global values. GW-OLS fits a regression equa-
tion for every location in the dataset, incorporating the dependent and explanatory variables falling within the 
user-selected bandwidth of each target location. The bandwidth’s shape and size usually depend on the kernel 
type, bandwidth method, distance, and the number of neighbors parameters. Like GW correlation analysis, we 
used "bi-square kernels" with adaptive distance to select the optimum neighbor size. We found the lowest AICc 
values at 248 nearest neighbors county (Figure S3). For evidence of local coefficient estimates significantly dif-
ferent from zero, we calculated p-values (adjusted) from pseudo-t-values using the method described by Foth-
eringham-Byrne40. To investigate local collinearity in a GW regression model, we also calculated local variance 
inflation factors (VIFs) for each independent variable. Local collinearity problems in the GW regression model 
are usually considered if VIFs greater than ten would be found at any locations for any independent  variables37. 
The "GWModel"  package38 in R Statistical Computing  Environment39 was used for this purpose.

Geographically weighted random forest (GW‑RF). The linear model is susceptible to outliers, and strong 
assumptions are required regarding the relationships between predictors and target variables (linearity) and the 
relationships among the predictors (collinearity). The nonlinear non-parametric models such as random forest 
(RF) do not need to consider multicollinearity and can analyze all independent variables without  screening24. 
The geographically-weighted random forest (GW-RF) model may address the limitations of the linear GW-
OLS model and can improve predictive performance relative to a non-geographically-weighted random forest 
model, which is unable to resolve heterogeneous spatial  processes23. The main idea of GW-RF is similar to that 
of the traditional GW-OLS model, in which the model is calibrated locally rather than  globally17 by integrating 
spatial weight matrix (SWM) and RF into a local regression analysis  framework24. The local feature importance 
represents the mean increase in Mean Squared Error (incMSE) if a predictor would be randomly permuted or 
the decrease in node impurities (IncNodePurity) from splitting on the variable, averaged over all trees. Both 
measures are derived from the Out of Bag (OOB) error. More details on these model approaches can be found 
in the supplemental materials.

Before fitting the GW-RF model, we used a Random Grid Search (RGS) to find the optimal parameters for the 
global RF model. We employed the K-fold cross-validation method to determine the optimal hyper-parameters 
from a set of all possible hyper-parameter value combinations (Supplementary Information Table S2). During 
the parameter tuning process for the early stopping parameters, we used 0.001 and 2 for "stopping tolerance" and 
"stopping rounds", respectively. The best parameters ("ntree", number of tree and "mtry", number of variables 
randomly sampled) for global RF model were used to train the local GW-RF model. We trained the GW-RF with 
284 nearest neighbors with bootstrapped 2950 "ntrees" and 4 "mtry" in each tree. Both the global and local RF 
models were trained with mean data from 2013 to 2017, 2013–2015, and of 2016 and 2017 to explore variation 
in feature importance due the data distribution. We used the two most commonly used global interpretability 
approaches, such as the Permutation Feature Importance (PFI)  approach41 and partial dependency  profile42, to 
interpret the predictors’ role in the global RF model. We also ranked the variables based on the mean decrease 
Gini impurity index or “IncNodePurity” that is used for the calculating the splits in trees. We used "SpatialML" 
 package23,43 in the R Statistical Computing  Environment39.

for GW-RF analysis. For feature importance and generated partial dependence profiles (PDP) global RF 
model, we used the "DALEX"  package44 in R Statistical Computing  Environment39.
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Predictive performance of GW models. Like other regression models, GW-RF can also be used as a predictive 
model rather than a tool to explore spatial heterogeneity in the relationship between disease outcomes and risk 
factors. We first evaluated the predictive performance of GW-RF using K-fold cross-validation. Cross-validation 
statistics usually give a better indication of how a model will perform on unseen data. In K-fold cross-validation, 
the data set was randomly divided into a test and training set k different times, and model evolution was repeated 
k times. Each time, one of the k subsets was used as the test set, and the other k‑1 subsets are put together to 
form a training set. Then the average error across all k trials was computed. Diagnostic measures of K-fold 
cross-validation were root-mean-square error (RMSE) and goodness of fit  (R2). We also evaluated GW-OLS 
and GW-RF performance to predict county-level T2D prevalence using a sub-set of data. The data set (n = 3108) 
was randomly split into 2484 training data used for training again the GW models and 624 test data (Figure S2), 
which were used to evaluate the models. The summary statistics and distribution of T2D prevalence and risk 
factors of training and test data sets are reasonably close to the entire data set (supplementary data, Table S1 and 
Figure S2). Global Ordinary least squares (OLS) and RF regression models were used as benchmark methods.

Results
Exploratory data analysis. Figure  1a shows the spatial distribution of county-level, age-adjusted T2D 
prevalence in the years 2013 and 2017, and 5 year mean (2013–2017) (Fig.  1a). County-level prevalence of 
T2D remains relatively stable through these years, with notable increases in the year 2017 concentrated in the 
southeast US. Averages of T2D prevalence at the county-level over the years 2013–2017 show higher preva-
lence (> 10%) in many counties of the southeast US while many western counties tend to haveT2D prevalence 
below 10%. Changes in T2D prevalence between 2013 and 2017 were mostly positive in many counties scattered 
throughout the US, experiencing more than a 50% increase in prevalence over the 5 years, while few counties 
show declines T2D (Fig. 1b). Getis-Ord Gi* Hot Spot analysis shows high clustering of T2D in the southeast US 
while there are cold (low) clusters of T2D in the West and regions of the Northeast (Fig. 1c).

The mean values of six risk factors of T2D risk from 2013 to 2017 are shown in Fig. 2. Prevalence of obesity, 
physical inactivity, and lack of higher education generally share similar geographical locations; the highest being 
in the southeast US counties (Fig. 2a,b,f). In contrast, counties in the West, Midwest, and Northeast tend to 
have lower mean obesity and physical inactivity, and better educational attainment. Percent of people who have 
access to exercise (Fig. 2c) is generally high across the US counties in the West and Northeast regions (75–100%). 
Poverty also seems to be ubiquitous across US counties, though there are apparent clusters of high poverty in the 

Figure 1.  County-level prevalence maps of (a) T2D for the years 2013–2017 and 5-year average (2013–2017); 
(b) percent change from years 2013–2017; and (c) the geographical clusters of counties from Getis-Ord Gi* 
statistics of T2D. Maps in (a) and (b) were created in the R (4.0.0) Statistical Computing  Environment39. Getis-
Ord Gi* Hot Spot map was created in ArcGIS Desktop version 10.6.135.
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South and West (Fig. 2e). Food environment index across the US indicates that populations in the Midwest and 
Northeast have the better access to food outlets and healthy foods compared to the West and Southeast (Fig. 2d).

The bivariate global Moran’s I result in Figure S4 show a positive association between T2D and physical 
activity, obesity, poverty, poor education, and a negative association between access to exercise and the food 
environment index. LMI clusters of T2D and these 6 risk factors are presented in maps in Fig. 3. The red color 
(High-High) correspond to significant clusters of high T2D prevalence with a high prevalence of obesity (Fig. 3a), 
physical inactivity (Fig. 3b), poverty (Fig. 3e), and education (Fig. 3f). These counties are mostly concentrated 

Figure 2.  County-level 5-year averages (2013–2017) of six risk factors. (a) obesity; (b) physical inactivity; 
(c) access to exercise; (d) food environment index; (e) poverty; and (f) education. Maps were created in the R 
(version 4.0.0) Statistical Computing  Environment39.

Figure 3.  Bivariate LMI cluster of diabetes and (a) obesity; (b) physical inactivity; (c) access to exercise; (d) 
food environment index; (e) poverty; and (f) education. Maps were generated in GeoDa (version 1.14), an open 
source software for geodata  analysis45.
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in the South. The light red color (High-Low) in maps represents significant clusters of high DM-2 prevalence 
with limited access to exercise (Fig. 3c) and low food environment index (Fig. 3d).

Local correlation analysis was used to explore the relationship between T2D and the six major risk factors 
at any county with a specific bandwidth (Fig. 4). The global correlations between T2D prevalence and six risk 
factors are moderate to strong (Fig. 4a). The correlations were positive for T2D and obesity, physical inactivity, 
and poverty, and education level and negative for T2D and access to exercise and food environment index. These 
relationships, however, showed non-stationarity and varied spatially (Fig. 4b–g). For instance, the local correla-
tion between obesity and T2D is strong in counties in the West, but weak in the Midwest (Fig. 4b).

Similarly, physical inactivity has positive and strong correlations with T2D in the West, Northeast, and 
South (Fig. 4c). Local correlations between T2D and access to exercise and food environment index are gener-
ally similar and moderate; both predictors are negatively associated with T2D in the West, South, and Midwest 
(Fig. 4d,e). Poverty and low educational attainment generally have weak and positive correlations with T2D in 
most counties (Fig. 4f,g).

Geographically weighted ordinary least squares (GW-OLS). All risk factors were positively associ-
ated with T2D prevalence (p < 0.001) in the global OLS model, except for the food environment index (Table 1). 
Although the global OLS model explained 67% variability of T2D prevalence, it provided a baseline for sub-
sequent global and local models. Local OLS (GW-OLS) showed significant improvement over the global OLS 
model, reflected by higher adjusted  R2 values and lower AIC values (Table 1). The local  R2 values are relatively 
high in most counties in the West and some counties in the Midwest, South and Northeast (Figure S11a).

Figure 4.  Global (a) and local Pearson correlation coefficients (r-values) of T2D prevalence and six risk factors. 
(b) obesity; (c) physical inactivity; (d) access to exercise; (e) food environment index; (f) poverty; and (g) 
education. Maps were created in the R (version 4.0.0) Statistical Computing  Environment39.

Table 1.  Summary results of ordinary least square (OLS) and geographically weighted ordinary least squares 
regression (GW-OLS) models. OLS: ordinary least squares, GW-OLS, geographically weighted OLS regression, 
AIC: Akaike’s information criterion. ***p < 0.001, NS: not significant.

OLS GW-OLS

Estimate Pr( >|t|) Min 1st Qu Median 3rd Qu Max

Intercept 10.02  < 2e−16*** 8.40 9.46 10.02 10.82 11.57

Obesity 0.82  < 2e−16*** 0.12 0.67 0.87 1.05 1.65

Physical inactivity 0.85  < 2e−16*** − 0.12 0.28 0.58 0.85 1.22

Access to exercise 0.20 5.36e−11*** − 0.56 − 0.09 0.02 0.16 0.60

Food environment index − 0.02 0.662NS − 1.02 − 0.29 − 0.14 0.03 0.50

Poverty 0.18 1.66e−06*** − 0.58 − 0.11 0.02 0.16 0.58

Education 0.65 2e−16*** − 0.40 0.14 0.35 0.58 1.21

R2 0.665 0.791

Adjusted-R2 0.665 0.770

AIC 11,035.6 9978.4
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The local GW-OLS VIFs for each independent variable suggests that there is negligible collinearity as no 
value exceeds 10 for any of the risk factors (Supplementary Figure S5). Local VIF values for obesity and physical 
inactivity appear slightly higher in the lower Western region than the rest of the country, being the only region 
with values over 5 for these risk factors. Local coefficients for obesity ranged from 0.12 to 1.65 with a median 
value of 0.87 (Table 1), and the coefficients are significant and positive in 80% of counties in the conterminous 
USA (Figure S6a). However, the high values were generally in many counties in the West and South (Fig. 5a,g). 
Compared to obesity, the coefficients for physical inactivity were narrower, ranged from 0.28 to 1.22, and sta-
tistically significant in some counties in the Northeast, Midwest, and South (Fig. 5b,h), which represents 39% 
of counties in the conterminous USA (Figure S6b). Positive and significant coefficients for poverty were found 
in the Midwest and West (Fig. 5e,k). A small number of counties showed statistically significant negative coef-
ficients for access to exercise (Fig. 5c,i) and food environment index (Fig. 5d,j). A small number of the counties 
showed a significant positive coefficient for education (Fig. 5f,l).

Geographically weighted random forest regression (GW-RF). The GW-RF model showed lower 
MSE values than that of global RF (Table 2). The local pseudo-R2 ranged from 0.18 to 0.78, with a mean value 
of 0.50. The local GW-RF models are more robust (pseudo-R2 > 0.6) in 28% of counties in parts of the West and 

Figure 5.  Spatial variation of local coefficients and p-values (adjusted) of geographically weighted OLS 
(GW-OLS) regression models. (a–f) local coefficients of obesity, physical inactivity, access to exercise, food 
environment index, poverty and education, and (g–l) corresponding local p-values of all predictors. Maps were 
created in the R (version 4.0.0) Statistical Computing  Environment39.

Table 2.  Summary results of random forest (RF) and geographically weighted random forest regression (GW-
RF) models. Both models were trained with 5 years of mean data (2013–2017) of 3108 counties. %IncMSE: 
mean increase in MSE, MSE: mean squared error.

RF GW-RF

%IncMSE Min Max Mean Std

Obesity 175.60 2.33 179.98 79.75 33.94

Physical inactivity 178.85 6.76 115.92 56.95 24.29

Access to exercise 86.85 − 13.01 46.37 14.35 11.68

Food environment index 81.24 − 3.96 55.06 21.94 10.22

Poverty 116.09 − 7.31 64.90 21.85 13.59

Education 143.86 6.34 84.48 37.03 13.09

MSE 1.87 0.75 2.79 1.69 0.48

R2 0.69 0.184 0.780 0.508 0.005



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6955  | https://doi.org/10.1038/s41598-021-85381-5

www.nature.com/scientificreports/

Northeast regions (Figure S11b). At the same time, they become less accurate (pseudo-R2 < 0.5) in 48% of coun-
ties in the central Midwest and South. The result suggests that additional variables should be included to improve 
the GW-RF model performance in these regions of the US.

The Permutation-based Feature Importance (PFI) (Fig. 6a and Table 1) and mean decrease Gini score or 
IncNodePurity (Figure S7a) ranked physical inactivity as the number one most important variable, followed by 
obesity, poverty, and education. This ranking is consistent for the mean data from 2013 to 2015 (Figure S8a), 
and data for 2016 (Figure S9a) and 2017 (Figure S10a). When the effect of other predictors was controlled for, 
the impact of physical inactivity (Fig. 6b), obesity (Fig. 6c), poverty (Fig. 6d), and education (Fig. 6e) on T2D 
prevalence generally increased throughout their ranges.

The high incMSE values (> 100) for obesity were observed in a large number of counties in the West, South, 
and Northeast regions (Fig. 6f), which implies increased importance of obesity for T2D prevalence in these 
counties. Obesity ranked number one and the second most important variable in 60% and 25% of counties, 
respectively (Table 3). Physical inactivity was the 1st most influential risk factor in 30% of counties. These coun-
ties are distributed in Midwest counties and, to some extent, in the Northeast (Fig. 6g). Poverty demonstrated 

Figure 6.  (a) Permutation-based feature importance from global random forest, (b,c) partial dependency 
profiles of the first four important variables of global random forest model, and (f–l) spatial variation of local 
feature importance (%incMSE) of obesity, physical inactivity, access to exercise, food environment index, 
poverty, and education in geographically weighted random forest regression models. Higher values imply 
increased importance. The random forest model was trained with 5 years of mean data (2013–2017) of 3108 
counties. Maps were created in the R (version 4.0.0) Statistical Computing  Environment39.

Table 3.  The proportion of counties with local risk factors (the risk factor with the 1st, 2nd, and 3rd highest 
value of local variable importance) on the county-level T2D prevalence.

Risk factors

Proportion of 
counties

1st 2nd 3rd

Obesity 60.6 24.5 6.0

Physical inactivity 29.9 38.4 19.4

Access to exercise 0.0 1.6 4.6

Food environment index 0.0 1.1 16.0

Poverty 6.6 28.0 32.4

Education 0.7 4.3 19.3
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sparse local feature importance in the West and Midwest (Fig. 6k) and ranked first and second in 6.7% and 28% 
of counties, respectively.

Only in < 1 county was education the most important risk factor for T2D. However, in only a few counties, 
access to exercise and food environment index ranked second and third (Table 3) in their importance as risk 
factors for county-level T2D prevalence. Generally, however, features with little importance to county-level T2D 
prevalence include access to exercise (Fig. 6h), food environment index (Fig. 6i), and education (Fig. 6l). Poverty 
demonstrated sparse local feature importance in the West and Midwest (Fig. 6k). Spatial variation of the local 
Gini index or IncNodePurity of the risk factors (Figure S7b–g) are similar to that of incMSE (Fig. 6f–k). There 
is slight variation in the spatial pattern in incMSE between 5 year (2013–2017) mean data (Fig. 6f–k), 3 year 
(2013–2015) mean data (Figure S8b–g), and for 2016 (Figure S8b–g) and 2017 (Figure S9b–g).

Predictive performance of GW models. The performance of GW-RF and GW-OLS was evaluated 
using tenfold cross-validation. We found that the GW-RF model performed better than GW-OLS. The RMSE 
in GW-RF in cross-validation tests was 0.96% and explained 96% of the variability of T2D prevalence (Fig-
ure S11d). The scatter plots show that T2D prevalence predicted by GW-RF (Figure S11d) are closer to the 1:1 
line than GW-OLS model (Figure S11c). However, residuals show the difference between the local trends and are 
less smooth, and a large number of counties showed positive residuals (Figure S11d).

We further evaluated the performance of GWR with a subset test data set. The data set (n = 3108) was ran-
domly split into 2484 training data used to train the GW models and 624 test data (Figure S2), which were used 
for evaluating the model performance. Figure 7 shows 1:1 plot that compares the observed to the predicted T2D 
prevalence using (a) OLS, (b) RF, (c) GW-OLS, and (d) GW-RF models. The plots show consistent improvements 
in accounting for T2D variability  (R2) and RMSE when moving from the OLS to RF global models and then 
improve even further when comparing the GW-RF to the GW-OLS. The GW-RF model accounts for slightly 
more variability in T2D  (R2 = 0.76) than the GW-OLS model  (R2 = 0.72) with a concomitant reduction in RMSE 
values (1.19 vs 1.29).

Figure 7.  1:1 plot of observed versus predicted T2D prevalence (%) in 624 test counties for the (a) OLS, (b) RF, 
(c) GW-OLS, and (d) GW-RF regression models. All models were trained with data from 2484 counties (see 
supplementary information and Figure S2).
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Discussion
This study presents a non-parametric geographically weighted model, the GW-RF model, as both a predictive 
and exploratory tool to describe spatial heterogeneity of association between T2D prevalence and six risk fac-
tors across United States counties. The GW-RF model with obesity, physical inactivity, access to exercise, food 
environment index, poverty, and education level inputs explained higher variability of the T2D prevalence than 
the traditional global (OLS and RF) and local (GW-OLS) models. GW-OLS has been widely used to explore the 
association between T2D and demographic, social, and environmental risk  factors10,18–20. However, in most cases, 
GW-OLS does not consider the relationships among the predictors (collinearity), which is spatially heterogeneous 
in its correlation  structure37. Spatial collinearity leads to parameter redundancies, which invalidate any attempt 
to interpret a single GW coefficient independent of the remaining local estimates at the same  location21 and 
may affect the prediction performance of a GW regression  model37. The GW-OLS, moreover, overlooks possible 
dependencies among the local regression coefficients associated with diverse exogenous  variables21.

On the other hand, there is little or no agreement of collinearity in interpreting the feature importance in 
 RF46,47. Collinearity influences variable importance in large-scale learning problems with dimensional  data48. A 
review of various methods with highly correlated simulated data showed that RF was among the best performing 
models (lowest RMSE) in its ability to predict a training data  set49 and can handle collinearity better than other 
models, though we do caution that this method may not be the most optimal in dealing with  multicollinearity50. 
When some of the variables are not relevant for predicting the outcome of interest, a small perturbation of the 
training sample may completely change the ranking of the  variables51. A model with a small number of predictors 
is more interpretable and improved model accuracy, as we observed in this study. However, it has been shown 
that feature selection based on built-in method that calculates feature importance based on incMSE is less suit-
able for data with  multicollinearity52. Permutation based feature importance in correlated data may decrease the 
importance of the correlated features by splitting the importance between features.

Also, sensitivity to outliers is one of the critical drawbacks of the linear model, and a strong assumption is 
required. Similar to global RF, GW-RF has no linearity assumption since the tree-based model does not use 
metric distances between data points but applies splits along a  tree53. Moreover, the GW-RF model showed 
higher predictive power when compared to GW-OLS and global RF models. The application of GW-RF would 
produce the enhanced generalizability of the data created by the RF model in addition to the consideration of 
spatial heterogeneity that occurs by accounting for the localities present in the spatial data.

Several spatial modeling approaches have demonstrated an association between county-level diabetes preva-
lence and  obesity8–10. In this study, GW-RF ranked obesity as the most important risk factor in many counties 
(30–60%). These counties are mostly in the West and Northeast (low-low cluster) and South (high-high cluster) 
regions. In general, the 5 year mean of T2D prevalence in the South region of the United States is higher than 
that of the national average. This region of the US, where rates of diabetes tend to be historically high, has been 
termed the "diabetes belt," referring to the continuity of counties that are and are adjacent to high diabetes 
prevalence  areas8. The high T2D prevalence can be explained by a higher prevalence of obesity, poverty, and low 
populations of the Mississippi  valley8 as well as those in the Appalachian  regions54. Further, diverse populations 
living in impoverished and poorly integrated communities have similar diabetes  prevalence55,56. Many counties 
that have high diabetes prevalence are outside of the diabetes belt. For example, some counties in North Dakota, 
South Dakota, Oklahoma, New Mexico, and Nebraska had a prevalence of diabetes > 15% but are not included 
in the belt. Many of these counties are characterized by extreme poverty, and some have large Native American 
populations with a relatively high prevalence of  diabetes57.

The built environment or community characteristics are a strong determinant of an individual’s physical activ-
ity, diet, and risk of  obesity58 and  T2D59,60. We found the food environment index, which measures food access 
and  availability33 was negatively related to T2D prevalence. However, the local relationship between T2D and food 
environment index was weaker than that of obesity, physical inactivity, and poverty. Only in few counties, it ranked 
as 2nd or 3rd most important variables. Food-insecure populations are likely to have limited access to healthy 
 food61 and usually depend on more convenient, high calorie foods, which can contribute to obesity and increased 
risk of  T2D62,63. Areas with low income and low physical access to  food64 are correlated with a high prevalence of 
obesity as supermarkets traditionally provide healthier options than convenience stores or smaller grocery  stores65. 
The components of the health and food environment were found to be associated with T2D  prevalence11–13, 66. 
However, the results of these studies are mostly inconsistent and unexpected in terms of associations shared with 
T2D prevalence. For instance, fast food restaurants serving high calorie foods, typically to low socioeconomic 
status communities, were negatively correlated with T2D prevalence in counties of South  Carolina11. Another 
study utilizing OLS found that in the diabetes belt, fast food restaurant density was a positive predictor of T2D 
prevalence. In contrast, in the remainder of the United States, the associate was  negative6. Geodemography tech-
niques applied to the diabetes belt identifying correlates of diabetes at finer, tapestry  scales67 also challenge some 
findings that T2D prevalence is high in areas with high minority compositions and urban  living10. A longitudinal 
analysis recently showed that food insecurity was associated with higher HbA1c, but living in an area with low 
physical food access was  not64. The inconsistencies in these findings may be due to the varying strength of relation-
ships between these environmental and social variables and T2D, which are poorly captured by linear models.

Besides food environments, living in closer proximity to sidewalks, parks, and gyms are more likely to 
have access to exercise and physical  activity68–70. Physical inactivity is not solely associated with community 
 characteristics71. Physical inactivity has been associated with T2D prevalence, independent of  obesity72 and 
related to high health care  expenditures73. In general, individuals residing in counties with high rates of poverty 
tend to live in environments with limited access to safe sidewalks, parks, and gyms.

The T2D prevalence data used in this study are CDC county-level estimates which have been used in many 
 studies1,8,9. However, these data have several limitations. The county-level prevalence data are model-based 
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estimates from the BRFSS telephone survey, which has some inherent limitations (e.g., recall bias, social desir-
ability bias, inability to reach houses without landline telephones prior to 2011)8. Diabetes prevalence excludes 
persons with undiagnosed  diabetes9, which might affect the results if counties significantly varied in the pro-
portion of undiagnosed  diabetes8. Underestimated body weight and overestimated height by self-report have 
historically underestimated county-level obesity  prevalence74.

Besides the limitation related to the data, GW models themselves have several limitations. In any GW model, 
local regression coefficients or local variable importance are derived in locations (eg, counties) based on the most 
proximate area of interest. Unlike the global model, the GW model is calibrated locally rather than globally; 
at each location or county in our study, a GW model was fitted, considering only nearby county data. We used 
adaptive kernel bandwidth to select the optimum number of counties to train GW models accounting for the 
differences in the size of the county and, therefore, the distance of influence, which is theoretically unknown 
and perhaps inconsistent across a geographic  area10. Because of this inconsistency, the number of neighbors 
or bandwidth were estimated based on the characteristics of proximate counties as defined by the kernel type, 
which may lead to spillover effects of the dependent variable in neighboring counties or the residuals’ spatial 
autocorrelation. However, it is a typical problem in the spatial modeling of infectious  disease75.

There are also limitations to our findings. The local  R2 in GW-OLS and GW-RF model with six risk factors are 
more robust (pseudo-R2 > 0.7) in many counties. At the same time, they become less accurate (pseudo-R2 < 0.5) 
in the central Midwest and southern Texas. The result suggests that additional variables should be included to 
improve the performance of the GW model further in these regions.

Although the GW-RF model in this study used only six well-known risk factors for exploring spatial heteroge-
neity of T2D prevalence, the focus of this study is not understanding the causation of T2D prevalence across US 
counties. Instead, this study is intended as a demonstration of how the recently developed GW-RF  model23,24,76,77 
can be used as both a predictive and exploratory tool to explore spatial heterogeneity of T2D considering the non-
linear relationship between risk factors and T2D prevalence. Thus, this method is applicable in many instances 
where there is an issue about selecting significantly correlated variables at various geographical locations.

Conclusions
This study is the first to our knowledge to apply the GW-RF regression model to explore spatial heterogeneity 
of county-level T2D prevalence in relation to multiple risk factors. We demonstrated improved goodness-of-fit 
and enhanced predictability by a GW-RF model against traditional local and global models. One of the impor-
tant contributions of this study is the ranking of US counties according to six major risk factors associated with 
T2D prevalence. Although there is a clear consistency between GW-OLS and GW-RF model for predicting T2D 
prevalence, it is evident that GW-RF performed better than GW-OLS model. The GW-RF may be applicable in 
spatial models where multicollinearity at various geographical locations is a major concern.

The results of this study may also present opportunities for focused epidemiologic research at the county 
level to better understand the mechanisms driving T2D prevalence in various regions. The findings of this study 
may lead to more tailored and effective prevention strategies from a policy perspective, which is critical, given 
the projected prevalence increase of diabetes in the coming decades. Understanding the spatial heterogeneity of 
the associations between T2D and risk factors may enable more advanced research and policy development to 
address the underlying, spatially varying contributors to T2D across US counties.

Data availability
The data sets generated during this study are available from the corresponding author upon reasonable request.
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