Abstract
Quantum catalysis is a feasible approach to increase the performance of continuousvariable quantum key distribution (CVQKD), involving the special zerophoton catalysis (ZPC) operation. However, in the practical point of view, the improvement effect of this operation will be limited by the imperfection of the photon detector. In this paper, we show that the ZPC operation at the sender can be simulated by a postselection method without implementing it in practical devices. While performing this virtual version of ZPC in CVQKD, we can not only reach the ideal case of its practical implementation with minimal hardware requirement, but also keep the benefit of Gaussian security proofs. Based on Gaussian modulated coherent state protocols with achievable parameters, we enhance the security of the proposed scheme from the asymptotical case to the finitesize scenario and composable framework. Simulation results show that similar to the asymptotical case, both the maximal transmission distance and the tolerable excess noise of virtual ZPCinvolved CVQKD outperform the original scheme and the scheme using virtual photon subtraction while considering finitesize effect and composable security. In addition, the virtual ZPCinvolved CVQKD can tolerate a higher imperfection of the detector, enabling its practical implementation of the CVQKD system with stateoftheart technology.
Introduction
Quantum key distribution (QKD)^{1,2}, the best known application of quantum communication, enables two remote legal parties, called Alice and Bob, to establish secret keys over an insecure quantum channel controlled by an eavesdropper (Eve). One implementation approach of QKD is to encode the information in the state of single photon^{3}, such as polarization. However, this discretevariable (DV) QKD requires singlephoton detector in practice, which may bring about challenges for the commercial popularization of DVQKD because of its cost and limited detection efficiency. Alternatively, continuous variable (CV) QKD, which encodes the information in the quadratures (\(\hat{x}\) and \(\hat{p}\))^{4,5,6,7}, can be implemented with coherent state and thus be compatible with standard telecommunication optical networks. In theory, its unconditioned security has been proven to be secure against general collective attacks^{8,9}. In practice, high secret key rate and long transmission distance of CVQKD have also been achieved^{10,11,12,13,14,15,16}. Nevertheless, restricted by the limited data postprocessing speed and the sensitivity to excess noise, the transmission distance of CVQKD can not catch up with its DV counterpart^{17}.
One of feasible methods that can improve the transmission distance of CVQKD is the use of linear amplifiers, including deterministic and probabilistic amplifiers. Deterministic linear amplifier^{18,19,20}, such as phaseinsensitive amplifier, can amplify each incoming signal deterministically so that the performance of CVQKD can be improved^{21,22,23}. However, actual deterministic linear amplifier not only amplifies the incoming signal and its own noise linearly, but also unavoidably adds extra noise on the signal, which reduces the signaltonoise ratio. Alternatively, probabilistic amplifier, such as noiseless linear amplifier, amplifies the incoming signal linearly with a certain probability, which is heralded, but introduces less even no noise^{24,25,26,27,28}. Such a noiseless linear amplifier is demonstrated to extend the transmission distance of CVQKD^{29,30}. However, a successfully heralded event of noiseless amplifying needs a singlephoton event on photon detector, which renders its practical employment challenging. Interestingly, such probabilistic amplifying can be emulated by postselection method, namely virtual noiseless amplification^{31}. Although this virtual method makes possible its application for CVQKD, the postselection probability function of it is diverging, which will complicate the security analysis^{32}. Recently, the combination of deterministic and noiseless linear amplifier has been investigated theoretically and experimentally^{33,34}. Such heralded linear amplifier can also be applied to improve the performance of CVQKD^{35}.
Another viable approach that can improve the transmission distance of CVQKD is the employing of quantum operation, including photon subtraction, quantum scissors and quantum catalysis (QC) operation. The photonsubtraction and quantum scissors operations are nonGaussain operation. They degrade the secret key rate in short distance but increase the maximal transmission distance of CVQKD^{36,37,38,39,40,41,42,43}. Yet, there exists a possible drawback when taking photon number resolving detector (PNRD) into account. Fortunately, the propose of virtual photonsubtraction for CVQKD enables the photonsubtraction operation to a worthy of practical implementation^{44,45,46,47}. However, rigorous security proof of such nonGaussian protocol is still an open problem. Attractively, the quantum photon catalysis operation, especially for zerophoton catalysis (ZPC), compared with the photonsubtraction operation applied to CVQKD, has larger success probability as well as better performance improvement in terms of secret key rate, transmission distance and tolerable excess noise^{48,49,50}. Nevertheless, this approach also needs a PNRD or an on/off detector to herald a successful quantum photon catalysis operation, which degrades its practical significance.
To remove the abovementioned imperfections of the photon detector, in this paper, we propose a scheme of virtual zerophoton catalysis (VZPC)based CVQKD, which can be implemented via Gaussian postselection at the sender. One advantage of this method of VZPC is that it can not only emulate an ideal ZPC operation but also implement it without practical devices. Another advantage is that the postselection probability function or the acceptance function is Gaussian and bounded, and thus our proposed scheme remains equivalent to an effective deterministic Gaussian protocol, which can follow all the Gaussian security proofs as well as the corresponding conventionally Gaussian data postprocessing. Furthermore, considering the imperfection of the detector, we expand the security of the proposed scheme from the asymptotical case to the finitesize scenario and composable framework based on Gaussian modulated coherent state protocol and experimentally reachable parameters, in homodyne and heterodyne detection configurations. The VZPCbased CVQKD not only outperforms the original scheme and the scheme with virtual photon subtraction, but also has a higher toleration of the imperfection of the detector.
Results
The VZPCbased CVQKD
Quantum catalysis can be applied to facilitate the conversion of the target ensemble^{51} and enhance the coherence of the coherent state^{52}, which could prevent the loss of information effectively. It has been demonstrated theoretically that the performance of CVQKD can be improved when acting quantum catalysis operation on it, in both the EinsteinPodolskyRosen (EPR)based scheme^{48} and the locally generated local oscillator (LLO)based scheme^{49}. To make our description selfcontained, in this section, we introduce the characteristics of quantum catalysis operation, and then propose the VZPCbased CVQKD.
The characteristics of quantum catalysis operation can be illustrated in Fig. 1a. An auxiliary mode Y with number state \(m\rangle \) interacts with the input mode C at the beam splitter (BS) with a transmittance T. The output \(Y'\) of mode Y then launches into an ideal PNRD to herald whether a successful quantum catalysis operation happened or not. If there remains m photons registered in the PNRD, we call the process above a successful mphoton quantum catalysis operation, which is represented by an equivalent operator \(\hat{C}_m\)^{48},
where T is the transmittance of the BS in Fig. 1a, \(c^\dag \) and c are the creation and annihilation operators of the input state in mode C. Note that, for the auxiliary modes Y and \(Y'\) of quantum catalysis operation, the input and output photon number seems like invariable, which means the detection result of the PNRD must be equal to the photon number of mode Y and is different from the mphoton subtraction operation (m > 0) shown in Fig. 1b. The postselection state of \(C'\) for ZPC is conditioned on the 0 photon event on the PNRD while for mphoton subtraction is conditioned on the m (m > 0) photon event on the PNRD.
The quantum catalysis operation has larger success probability than the photon subtraction operation, and hence the ZPCbased CVQKD has better performance improvement in terms of secret key rate, transmission distance and tolerable excess noise^{48,49}, especially for the ZPC. Therefore, in this work, we mainly focus on the ZPC operation. The specific application scheme of the ZPC in the equivalent entanglementbased (EB) CVQKD and its corresponding prepareandmeasure (PM) scheme can be simply described in Fig. 2a, b, respectively. However, from a practical point of view, the requirement of a PNRD or an onoff detector brings about practical difficulties. The imperfection of the detector and the augment to CVQKD system’s complexity reduce the attractiveness of quantum catalysis operation. To overcome the difficulties mentioned above, in what follows, we suggest an equivalent postselection method to emulate the ZPC operation in CVQKD with Gaussian modulated coherent state protocol. By using this method, one can not only enjoy the perfect ZPC operation but also remove the problem of increasing the system’s complexity.
Now, let us begin the description of the equivalent postselection method with the EB scheme of the ZPCbased CVQKD. As shown in Fig. 2a, Alice prepares a pair of EPR state, including two modes A and B with a modulation variance V, i.e.
where \(\lambda = \sqrt{(V  1)/(V + 1)}\). She retains mode A of the two modes and sends the other mode B to Bob. For the preserved mode A, Alice performs heterodyne detection on it and gets the results {\(x_A\), \(p_A\)}, which obeys Gaussian distribution with probability distribution \(P_A = \frac{1}{2\pi (V + 1)}e^{(x_A^2 + p_A^2)/2(V + 1)}\)^{53}. It is known that heterodyne detection on mode A will project mode B onto a coherent state \(\alpha \rangle \) with \(\alpha = x_b + ip_b = \lambda (x_A  ip_A)\)^{54}. Consequently, the mixed state \(\rho _{B}\) can be given by
where \(P_b = \frac{1}{2\pi (V  1)}e^{(x_b^2 + p_b^2)/2(V  1)}\)^{53}. Before Alice sends mode B to Bob, she performs the ZPC operation on mode B and yields the mode \(B_1\) if this operation is successful. Therefore, after the BS1, the mixed state of mode \(B_1\) undergone a successful ZPC operation can be given by
with
where \(P_Z\) is the success probability of the ZPC operation. It can be obtained by the relationship of \(\mathrm {Tr}(\rho _{B1})=1\), given by \(P_Z = \frac{2}{1  VT + V + T}.\) Comparing with the state \(\rho _{B_1}\) in Eq. (4) and the state \(\rho _B\) in Eq. (3), one can find two differences between them. One is the additional weighting function \(W = e^{\alpha ^2(g^2  1)}/P_Z\), which leads to an acceptance probability \(P_{\alpha } = e^{\alpha ^2(g^2  1)}\) for each pair of measured results \(\{x_A,p_A\}\). The total acceptance probability for all the data measured by Alice is \(\int \mathbf {d}x_A\mathbf {d}p_AP_{\alpha }P_A = P_Z\), resulting in the success probability of the ZPC operation. The other one is the rescaling of the mean value of the coherent state from \(\alpha \) to \(g\alpha \) (\(\sqrt{T}\alpha \)). Although the ZPC operation is probabilistic, \(P_{\alpha }\) is Gaussian so that \(P_A'\) is still a Gaussian distribution, and thus this filter is Gaussian in the sense that it converts one Gaussian state into another Gaussian state, which means the ZPC operation preserves Gaussianity while the mphoton quantum catalysis operation (\(m >0\)) is nonGaussian^{55}. As the heterodyne detection and the ZPC operation are conducted on two different modes A and B, these two processes can be commuted with each other. Thus, we get an equivalent VZPC through Gaussian postselection of Alice’s each measurement result with an acceptance probability \(P_{\alpha }\) after exchanging the heterodyne detection and the ZPC operation. To be more specific, the PM version of the VZPCbased CVQKD, as shown in Fig. 2c, can be summarized as follows:
 Step 1:

Alice prepares a coherent state \(\alpha \rangle \) with \(\alpha =\sqrt{T}\lambda (x_A + p_A)\) and sends it to Bob, where \(x_A\) and \(p_A\) obey Gaussian distribution with zero mean and variance of \((V + 1)\).
 Step 2:

Bob receives the coherent state sent by Alice and performs homodyne or heterodyne detections. The measurement results are \(x_B\) and \(p_B\), respectively.
 Step 3:

After performing many rounds of step 1 and 2, Alice and Bob preserve enough data. Alice uses the acceptance probability to determine which data will be accepted and reveals them to Bob.
 Step 4:

Using the accepted data determined by step 3, Alice and Bob accomplish the conventional postprocessing steps, involving parameter estimation, information reconciliation and privacy amplification.
Since the Gaussian postselection can not change the Gaussianity of the data that Alice finally determined for generating secret keys, the suggested scheme remains equivalent to an effective deterministic Gaussian protocol, which can follow all the Gaussian security proofs as well as the corresponding conventionally Gaussian data postprocessing. Note that since \(0 < g \le 1\), the acceptance probability function \(P_{\alpha }\) is bounded. As a result, for arbitrary probability distribution \(P(\alpha )\) of \(\alpha \), the integration \(\int \mathbf {d} \alpha ^2 P_{\alpha }P(\alpha )\) is convergent. Therefore, differing from the virtual noiseless amplification^{31}, there is no divergence problem for the VZPCbased CVQKD.
Performance analysis
In this section, based on Gaussian modulation of the quadratures of coherent states, we show the performance of our scheme for the security frameworks of asymptotic, finitesize and composable scenarios under a collective Gaussian attack assumption.
In order to derive the analytical expression of the secret key rate, we need get the covariance matrix \(\Gamma _{AB_3}\) of the state \(\rho _{AB_3}\) in the equivalent EBbased version of our scheme. The covariance matrix of the EPR state \(\rho _{AB}\) that Alice prepared can be given by^{56}
where \(\mathbf {I} = \bigg (\begin{array}{cc} 1 &{} 0 \\ 0 &{} 1 \end{array}\bigg )\) and \(\sigma _Z = \bigg (\begin{array}{cc} 1 &{} 0 \\ 0 &{} 1 \end{array}\bigg )\). After performing the ZPC operation on mode B, the covariance matrix of the yield state \(\rho _{AB_1}\) can be expressed as
where
The explicit derivation of the above expressions and the covariance matrix \(\Gamma _{AB_3}\), containing the cases of asymptotic, finitesize and composable scenario, are shown in Supplementary S1. With the covariance matrices obtained in Supplementary S1, we can calculate the secret key rates using techniques shown in Refs.^{8,9,48,56} for asymptotic, finitesize and composable security, as shown in Supplementary S2. For comparison, in what follows, we also show the simulation results of CVQKD with virtual photon subtraction (VPS). Its computing of covariance matrixes and secret key rates under asymptotic, finitesize and composable security are shown in Supplementary S3. Since the CVQKD with virtual 1photon subtraction (V1PS) has the optimal performance improvement^{44}, we only show results of V1PSbased CVQKD here. Note, as the 1PS operation is nonGaussian, all the calculated results for it are lower bounds based on the Gaussian hypothesis according to the extemality of Gaussian quantum states^{57}.
Asymptotic security
We now give the asymptotical security of the VZPCbased CVQKD. The global parameters that are used for simulation are the variance V of the equivalent EPR state, the transmission efficiency \(T_C\) and the excess noise \(\xi \) of the quantum channel, the quantum efficiency \(\eta \) and electronic noise \(\xi _{el}\) of the detector, the reconciliation efficiency \(\beta \) of the reverse reconciliation phase. The parameters \(\xi \), \(\eta \) and \(\beta \) are fixed to values \(\xi = 0.01\) (in shot noise units), \(\eta = 0.6134\), \(\beta = 0.96\)^{14}. The variance V takes the value 20 (in shot noise units), while we set the electronic noise of the detector \(\xi _{el}\) to 0.01 or 0.001 (in shot noise units)^{11}. In addition, the channel transmission efficiency is written as \(T_C = 10^{\alpha L/10}\), where \(\alpha = 0.2\) dB/km is the loss coefficient of optical fibers, and L is the fiber length.
The simulation results for homodyne and heterodyne detection are shown in Fig. 3a, b, where dashdotted, dashed and solid lines are related to the results of the VZPCbased CVQKD, the V1PSbased CVQKD and the original CVQKD, respectively. The dotted lines are the fundamental benchmark of CVQKD, i.e. PLOB bound^{58}. Note that \(T = 1\) represents catalysis operation is not performed. From the above results we can find that similar to the results in Ref.^{48}, our proposed scheme can improve the maximal transmission distance and outperforms the V1PSbased CVQKD CVQKD, while considering the imperfection of the detector. When the electronic noise arises to 0.01, the V1PSbased CVQKD can no longer improve the transmission distance, whereas our proposed scheme is still effective. Actually, the ZPQC operation will decrease not only the final mutual information \(P_Z\beta I_{AB}\) shared by Alice and Bob but also the stolen information \(P_Z\chi _{BE}\) available to Eve on Bob’s key, as shown in Fig. 4. Interestingly, compared to the former, the latter has a relatively larger degradation, which enables the secret key rate to remain positive in the longdistance regime, as shown in Fig. 4, where the vertical axis represents the ratio between the decrement \(\Delta \chi _{BE}\) of \(P_Z\chi _{BE}\) and the decrement \(\Delta I_{AB}\) of \(P_Z\beta I_{AB}\) (in the unit of dB), which is defined as \(\Delta I_{R} = 10\mathrm {log}_{10}(\Delta \chi _{BE}/\Delta I_{AB})\). Furthermore, from the green solid line in Fig. 4, we can find that \(\Delta I_{R}\) increases with the transmission distance, which enables our proposed system to reach a longer maximal transmission distance.
In addition, the electronic noise of the detector at the receiver has a significant effect on our suggested scheme. Larger electronic noise not only degrades the entire performance significantly, but also decreases the performance improvement of CVQKD with the VZPC, which shows the possibly large limit of detector to practical system. Besides, except within very short transmission distance (smaller than 10 km), the performance of homodyne detection is better than heterodyne detection for \(\xi _{el} = 0.001\). While the electronic noise of detector arising to 0.01, the performance of homodyne detection is always better than heterodyne detection. The reason is a extra unit of shot noise introduced by the heterodyne detection.
We also give the tolerable excess noise for the given parameters above, as shown in Fig. 3c, d, where the insets mean the corresponding optimal value of T. The tolerable excess noise is larger than the original scheme and the V1PSbased scheme. Similar the secret key rate results in Fig. 3b, for the electronic noise up to 0.01, the tolerable noise can no longer be improved for the V1PSbased protocol. These mean a more robust CVQKD system can be obtained with the VZPC, by optimizing the parameter T.
Finitesize analysis
In the practical implementation of CVQKD, the amount of signal uses is not infinite, which means that we must consider the finitesize effect of the proposed scheme. Moreover, some of the signal uses are discarded in the postselection process, which will decrease the final signals used for parameter estimation and secret key generation. This postselection process may generate significant impact on finitesize regime. Therefore, for protocols using postselection, finitesize analysis is of great significance for practical application. In the following, we expand our suggested VZPCbased CVQKD to the finitesize case, which is more in line with the practical situation. We note that the final simulation results are similar to that of the asymptotic case, as shown in Fig. 5, where the block size N is set to be \(10^9\), the parameters \(\epsilon _{EP}\), \(\epsilon _{PA}\) and \(\epsilon _{sm}\) are all set to be \(10^{10}\)^{8}. The rate \(r = m/N\), which is the rate of signals uses used for parameter estimation, is optimized for each distance in Fig. 5a, b, while it is fixed with \(r=5/7\)^{11} for Fig. 5c, d. It is visible that not only the maximal transmission distance but also the tolerable excess noise can be improved for the VZPCbased CVQKD when considering the finitesize effect, although the degree of improvement is slightly decreased. Moreover, our proposed scheme outperforms the V1PSbased scheme as well. While the block size N is up to \(10^{12}\), the results considering finitesize effect will closely approach that of the asymptotical case.
From a practical point of view, the evaluation of the optimal value of T will be under certain region. If the fluctuation of the estimated value of T has large impact on the proposed CVQKD system with the VZPC, complicated implementations will be required to acquire an accurate evaluation of T, leading to the employment of the VZPC non of worthy. Therefore, we inspect the variation of secret key rate under finitesize scenario when the parameter T diverging from its optimal value a certain range. Fortunately, the secret key rate changes slowly with the fluctuation of T at each distance around its optimum value \(K_{opt}\), as illustrated in Fig. 6, where \(V = 20\) and \(\xi _{el} = 0.001\). We can get that higher than 90% of the optimum secret key rate (\(K_{opt}\)) can be obtained while T changing in a relative large region, which is within the scope between the dashed line (\(K_{opt}(L)\)) and the dashdotted line (\(K_{opt}(U)\)). Similar results can be acquired for the case of asymptotical and composable security and we do not show it for simplicity.
Finally, we focus on the comparison of the extent of the effect on our proposed CVQKD scheme between the detector’s quantum efficiency and electronic noise. We depict the secret key rate simulation results in Fig 7a with electronic noise \(\xi _{el} = 0.01\), while the quantum efficiency the detector is equal to 1. We find that even the quantum efficiency is up to the perfect case, the performance remains a big gap compared to the case of \(\xi _{el} = 0.001\) and \(\eta = 0.6134\) (see Fig. 5a), which reflects that the detector’s electronic noise is a more sensitive parameter than its quantum efficiency, either homodyne or heterodyne detection. To make the results more clear, we draw the secret key rate as a function of detector’s quantum efficiency and electronic noise in Fig. 7b, where the transmission distance is 40 km. Since there is little even no performance improvement for 1photon subtraction operation, we don’t show its results here. We find that the imperfection toleration of homodyne detection is better than that of the heterodyne detection. In particular, compared with the original CVQKD protocol, our suggested scheme can tolerate a higher imperfection of the detector, especially for homodyne detection. These results related to the detector are also applied to the case under previous asymptotical security and the latter composable security.
Composable security
The composable security is of great significance for CVQKD to apply in more complex and unpredictable environments, whereas the finitesize analysis is a foundation for the practical implementation of CVQKD. Actually, for realistical application of CVQKD in complex environments, there exists a probability that the finally generated secret keys do not meet the requirement of the CVQKD protocol, i.e. the protocol has “flaw”. The composable security can relax the problem of how to evaluate the degree of this “flow” of a CVQKD protocol, and can also solve the problem of evaluating “flow degree” while the flowed keys are applied in other subsequent protocols. Therefore, it is of importance that whether the proposed scheme can also be applied to real complex environments and composed with other composable secure protocols. Composable security against collective attack for CVQKD has been proven in Ref.^{9}, which further implies composable security against general security combining the de Finetti theorem or postselection technique. Here, we give a further analysis of the proposed scheme in composable security framework against collective attacks, exploring the feasibility of the scheme under general security framework and therefore demonstrating the practical significance of it. All the values of the security parameters are chosen as follows^{9}:
We plot the numerical results of secret key rate and tolerable noise as well as the corresponding optimal value of T in Fig. 8a–d, where the total exchanged signals between Alice and Bob is set to be \(2n = 10^{11}\). From the simulation results, we can see that similar to the finitesize case, the maximum transmission distance can be improved in composable security framework as well. However, although the block size is up to \(10^{11}\), the maximally reachable transmission distance is even less than that of the finitesize case with \(N = 10^{9}\). The performance of finitesize case will approach to the asymptotical case while the block size reaches \(10^{11}\), whereas the block size should come up to \(10^{14}\) for composable security. Moreover, the results will be even worse for composable security with a lower block size. If the block size \(2n = 10^{10}\) and \(\xi _{el} = 0.001\) (not shown), only less than 24 km and 22 km can be reached for our proposed scheme with homodyne and heterodyne detection, respectively. For \(2n = 10^{10}\) and \(\xi _{el} = 0.01\), the results are even worse, merely less than 17 km and 12 km can be reached for our proposed scheme while performing homodyne and heterodyne detection. Non positive key rate can be obtained for all cases when \(2n = 10^9\). Therefore, it is more sensitive to the block size for the practical system under composable security framework. We plot the secret key as a function of 2n, the number of exchanged signals, in Fig. 8e, f, where the transmission distance is 20 km. From these results we can conclude that compared to the V1PSbased and the original CVQKD protocol, our proposed scheme can tolerate smaller limit of block size. Meanwhile, in Fig. 8e, f, we also show the corresponding results of our proposed scheme under finitesize security (two black solid lines), with a fixed rate \(r = 5/7\). Obviously, compared with the finitesize case, composable security has a higher security level and thus it requires much larger number of channel uses.
Discussion
We have proposed an approach, virtual zerophoton catalysis, to emulate the ideal zerophoton catalysis operation without practical devices in coherentstate CVQKD, which can be realized by Gaussian postselection according to Alice’s data. The postselection probability function or the acceptance function is Gaussian and bounded, which guarantees our proposed protocol remains equivalent to an effective deterministic Gaussian protocol, and thus enables it to follow all the Gaussian security proofs as well as the corresponding conventionally Gaussian data postprocessing. The simulation results show that by optimizing the main parameter, i.e., the transmittance T of Alice’s BS1, both the maximal transmission distance and the tolerable excess noise can be increased and outperform the V1PSbased CVQKD scheme, which is true for the asymptotical security and the security considering finitesize effect. By comparing the results of homodyne and heterodyne detection, additionally, we find that the performance of homodyne detection is superior to that of the heterodyne detection. Attractively, the CVQKD using virtual zerophoton quantum catalysis can tolerate a higher imperfection of the detector, especially for homodyne detection. These results indicate that our proposed scheme offers an opportunity of practically implementing the zerophoton catalysis on CVQKD systems.
References
 1.
Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. in Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, Bangalore, India, 175–179 (1984).
 2.
Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902. https://doi.org/10.1103/PhysRevLett.88.057902 (2002).
 3.
Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604. https://doi.org/10.1038/nphoton.2014.149 (2015).
 4.
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577. https://doi.org/10.1103/RevModPhys.77.513 (2005).
 5.
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669. https://doi.org/10.1103/RevModPhys.84.621 (2012).
 6.
Laudenbach, F. et al. Continuousvariable quantum key distribution with Gaussian modulationthe theory of practical implementations. Adv. Quantum Technol. 1, 1800011. https://doi.org/10.1002/qute.201800011 (2018).
 7.
Pirandola, S. et al. in Advances in Quantum Cryptography. arXiv eprints arXiv:1906.01645 (2019).
 8.
Leverrier, A., Grosshans, F. & Grangier, P. Finitesize analysis of a continuousvariable quantum key distribution. Phys. Rev. A 81, 062343. https://doi.org/10.1103/PhysRevA.81.062343 (2010).
 9.
Leverrier, A. Composable security proof for continuousvariable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501. https://doi.org/10.1103/PhysRevLett.114.070501 (2015).
 10.
Huang, D. et al. Continuousvariable quantum key distribution with 1 mbps secure key rate. Opt. Express 23, 17511–17519. https://doi.org/10.1364/OE.23.017511 (2015).
 11.
Huang, D., Huang, P., Lin, D. & Zeng, G. Longdistance continuousvariable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201. https://doi.org/10.1038/srep19201 (2016).
 12.
Zhang, Y. et al. Continuousvariable qkd over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006. https://doi.org/10.1088/20589565/ab19d1 (2019).
 13.
Zhang, G. et al. An integrated silicon photonic chip platform for continuousvariable quantum key distribution. Nat. Photon. 13, 839–842. https://doi.org/10.1038/s4156601905045 (2019).
 14.
Zhang, Y. et al. Longdistance continuousvariable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502. https://doi.org/10.1103/PhysRevLett.125.010502 (2020).
 15.
Lin, D., Huang, D., Huang, P., Peng, J. & Zeng, G. High performance reconciliation for continuousvariable quantum key distribution with ldpc code. Int. J. Quantum Inf. 13, 1550010. https://doi.org/10.1142/S0219749915500100 (2015).
 16.
Milicevic, M., Feng, C., Zhang, L. M. & Gulak, P. G. Quasicyclic multiedge ldpc codes for longdistance quantum cryptography. npj Quantum Inf. 4, 21. https://doi.org/10.1038/s4153401800706 (2018).
 17.
Yin, H. et al. Measurementdeviceindependent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501. https://doi.org/10.1103/PhysRevLett.117.190501 (2016).
 18.
Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817. https://doi.org/10.1103/PhysRevD.26.1817 (1982).
 19.
Andersen, U. L., Josse, V. & Leuchs, G. Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett. 94, 240503. https://doi.org/10.1103/PhysRevLett.94.240503 (2005).
 20.
Andersen, U. L. & Filip, R. Quantum FeedForward Control of Light, Vol. 53, 365–414 (Elsevier, 2009).
 21.
Fossier, S., Diamanti, E., Debuisschert, T., TualleBrouri, R. & Grangier, P. Improvement of continuousvariable quantum key distribution systems by using optical preamplifiers. J. Phys. B At. Mol. Opt. Phys 42, 114014. https://doi.org/10.1088/09534075/42/11/114014 (2009).
 22.
Zhang, H., Fang, J. & He, G. Improving the performance of the fourstate continuousvariable quantum key distribution by using optical amplifiers. Phys. Rev. A 86, 022338. https://doi.org/10.1103/PhysRevA.86.022338 (2012).
 23.
Guo, Y., Lv, G. L. & Zeng, G. H. Balancing continuousvariable quantum key distribution with sourcetunable linear optics cloning machine. Quantum Inf. Process. 14, 4323–4338. https://doi.org/10.1007/s1112801511003 (2015).
 24.
Ralph, T. & Lund, A. Nondeterministic noiseless linear amplification of quantum systems. AIP Conf. Proc. 1110, 155–160. https://doi.org/10.1063/1.3131295 (AIP, 2009).
 25.
Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603. https://doi.org/10.1103/PhysRevLett.104.123603 (2010).
 26.
Xiang, G., Ralph, T., Lund, A., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316. https://doi.org/10.1038/nphoton.2010.35 (2010).
 27.
Ferreyrol, F., Blandino, R., Barbieri, M., TualleBrouri, R. & Grangier, P. Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801. https://doi.org/10.1103/PhysRevA.83.063801 (2011).
 28.
Combes, J., Walk, N., Lund, A. P., Ralph, T. C. & Caves, C. M. Models of reducednoise, probabilistic linear amplifiers. Phys. Rev. A 93, 052310. https://doi.org/10.1103/PhysRevA.93.052310 (2016).
 29.
Blandino, R. et al. Improving the maximum transmission distance of continuousvariable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327. https://doi.org/10.1103/PhysRevA.86.012327 (2012).
 30.
Xu, B., Tang, C., Chen, H., Zhang, W. & Zhu, F. Improving the maximum transmission distance of fourstate continuousvariable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 87, 062311. https://doi.org/10.1103/PhysRevA.87.062311 (2013).
 31.
Fiurášek, J. & Cerf, N. J. Gaussian postselection and virtual noiseless amplification in continuousvariable quantum key distribution. Phys. Rev. A 86, 060302. https://doi.org/10.1103/PhysRevA.86.060302 (2012).
 32.
Walk, N., Ralph, T. C., Symul, T. & Lam, P. K. Security of continuousvariable quantum cryptography with Gaussian postselection. Phys. Rev. A 87, 020303. https://doi.org/10.1103/PhysRevA.87.020303 (2013).
 33.
Haw, J. Y. et al. Surpassing the nocloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun. 7, 13222. https://doi.org/10.1038/ncomms13222 (2016).
 34.
Zhao, J. et al. Quantum enhancement of signaltonoise ratio with a heralded linear amplifier. Optica 4, 1421–1428. https://doi.org/10.1364/OPTICA.4.001421 (2017).
 35.
Zhou, J., Shi, R., Feng, Y., Shi, J. & Guo, Y. Enhancing continuous variable quantum key distribution with a heralded hybrid linear amplifier. J. Phys. A Math. Theor. 52, 245303. https://doi.org/10.1088/17518121/ab1ecd (2019).
 36.
Huang, P., He, G., Fang, J. & Zeng, G. Performance improvement of continuousvariable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317. https://doi.org/10.1103/PhysRevA.87.012317 (2013).
 37.
Guo, Y. et al. Performance improvement of continuousvariable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304. https://doi.org/10.1103/PhysRevA.95.032304 (2017).
 38.
Liao, Q., Guo, Y., Huang, D., Huang, P. & Zeng, G. Longdistance continuousvariable quantum key distribution using nonGaussian statediscrimination detection. New J. Phys. 20, 023015. https://doi.org/10.1088/13672630/aaa8c4 (2018).
 39.
Ma, H. et al. Continuousvariable measurementdeviceindependent quantum key distribution with photon subtraction. Phys. Rev. A 97, 042329. https://doi.org/10.1103/PhysRevA.97.042329 (2018).
 40.
Wu, X., Wang, Y., Zhong, H., Liao, Q. & Guo, Y. Plugandplay dualphasemodulated continuousvariable quantum key distribution with photon subtraction. Front. Phys. 14, 41501. https://doi.org/10.1007/s1146701908818 (2019).
 41.
Lim, K., Suh, C. & Rhee, J.K.K. Longer distance continuous variable quantum key distribution protocol with photon subtraction at the receiver. Quantum Inf. Process. 18, 73. https://doi.org/10.1007/s1112801821674 (2019).
 42.
Ghalaii, M., Ottaviani, C., Kumar, R., Pirandola, S. & Razavi, M. Longdistance continuousvariable quantum key distribution with quantum scissors. IEEE J. Sel. Top. Quantum Electron. 26, 1–12. https://doi.org/10.1109/JSTQE.2020.2964395 (2020).
 43.
Ghalaii, M., Ottaviani, C., Kumar, R., Pirandola, S. & Razavi, M. Discretemodulation continuousvariable quantum key distribution enhanced by quantum scissors. IEEE J. Sel. Areas Commun. 38, 506–516. https://doi.org/10.1109/JSAC.2020.2969058 (2020).
 44.
Li, Z. et al. NonGaussian postselection and virtual photon subtraction in continuousvariable quantum key distribution. Phys. Rev. A 93, 012310. https://doi.org/10.1103/PhysRevA.93.012310 (2016).
 45.
Zhao, Y., Zhang, Y., Li, Z., Yu, S. & Guo, H. Improvement of twoway continuousvariable quantum key distribution with virtual photon subtraction. Quantum Inf. Process. 16, 184. https://doi.org/10.1007/s1112801716178 (2017).
 46.
Zhao, Y., Zhang, Y., Xu, B., Yu, S. & Guo, H. Continuousvariable measurementdeviceindependent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97, 042328. https://doi.org/10.1103/PhysRevA.97.042328 (2018).
 47.
Zhong, H. et al. Enhancing of selfreferenced continuousvariable quantum key distribution with virtual photon subtraction. Entropy 20, 578. https://doi.org/10.3390/e20080578 (2018).
 48.
Guo, Y., Ye, W., Zhong, H. & Liao, Q. Continuousvariable quantum key distribution with nonGaussian quantum catalysis. Phys. Rev. A 99, 032327. https://doi.org/10.1103/PhysRevA.99.032327 (2019).
 49.
Ye, W. et al. Improvement of selfreferenced continuousvariable quantum key distribution with quantum photon catalysis. Opt. Express 27, 17186–17198. https://doi.org/10.1364/OE.27.017186 (2019).
 50.
Ye, W., Zhong, H., Wu, X., Hu, L. & Guo, Y. ContinuousVariable MeasurementDeviceIndependent Quantum Key Distribution via Quantum Catalysis. arXiv eprints arXiv:1907.03383 (2019).
 51.
Lvovsky, A. I. & Mlynek, J. Quantumoptical catalysis: Generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401. https://doi.org/10.1103/PhysRevLett.88.250401 (2002).
 52.
Zhang, S. & Zhang, X. Photon catalysis acting as noiseless linear amplification and its application in coherence enhancement. Phys. Rev. A 97, 043830. https://doi.org/10.1103/PhysRevA.97.043830 (2018).
 53.
Pirandola, S., Spedalieri, G., Braunstein, S. L., Cerf, N. J. & Lloyd, S. Optimality of Gaussian discord. Phys. Rev. Lett. 113, 140405. https://doi.org/10.1103/PhysRevLett.113.140405 (2014).
 54.
Grosshans, F., Cerf, N. J., Wenger, J., TualleBrouri, R. & Grangier, P. Virtual Entanglement and Reconciliation Protocols for Quantum Cryptography with Continuous Variables. arXiv eprints quant–ph/0306141 (2003).
 55.
Hu, L., Liao, Z. & Zubairy, M. S. Continuousvariable entanglement via multiphoton catalysis. Phys. Rev. A 95, 012310. https://doi.org/10.1103/PhysRevA.95.012310 (2017).
 56.
Sánchez, G.P. & Raúl. Quantum Information with Optical Continuous Variables: From Bell Tests to Key Distribution (2007).
 57.
Navascues, M., Grosshans, F. & Acin, A. Optimality of Gaussian attacks in continuousvariable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006).
 58.
Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043. https://doi.org/10.1038/ncomms15043 (2017).
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61872390, 61801522), Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. 0171BCB23034) and Postgraduate Independent Exploration and Innovation Project of Central South University (Grant Nos. 2019zzts070, 2020zzts136).
Author information
Affiliations
Contributions
H.Z. performed the security analysis and wrote the manuscript, Y.G. and Y.M. supervised the project, Y.G. and W.Y. design the work, W.Y., Y.M. and D.H. reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhong, H., Guo, Y., Mao, Y. et al. Virtual zerophoton catalysis for improving continuousvariable quantum key distribution via Gaussian postselection. Sci Rep 10, 17526 (2020). https://doi.org/10.1038/s41598020733794
Received:
Accepted:
Published:
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.