Abstract
Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network as a smaller network of ‘super nodes’, where each super node comprises one or more nodes of the original network. We can then use this super node representation as the input into standard community detection algorithms. To define the seeds, or centers, of our super nodes, we apply the ‘CoreHD’ ranking, a technique applied in network dismantling and decycling problems. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity and more stable across multiple (stochastic) runs within and between community detection algorithms, yet still overlap well with the results obtained using the full network.
Introduction
Networks appear across disciplines as natural data structures for modeling relational definitions between entities, such as regulatory interactions between genes and proteins, and social connections between people. In practice, most networks are large and have intricate substructures that can be interrogated for further insights about the underlying data. A common practice for extracting subgraphs of interest is community detection^{1,2,3}, which aims to partition network nodes into groups based on the grouplevel connectivity patterns. For example, assortative communities are typically defined through some measure of a greater weight of withingroup edges compared to those between groups. Communities can be identified through various optimization problems, including likelihood maximization^{4,5,6} and quality function optimization^{7,8,9}, or from spectral properties of associated matrices^{10}. In this paper, we seek to explore whether a compressed, smaller version of the network can be used as input to community detection algorithms and produce a partition of nodes in the network that closely resembles the result that would have been obtained using the full network.
Much of our motivation for this network preprocessing step for community detection is inspired by the image analysis literature. The identification of communities in networks is in some ways similar to multilabel image segmentation, which aims to partition a grid of pixels into contiguous regions corresponding to objects in the image. In this sense, each segmented region can be viewed as a community^{11}. To speed up segmentation for large images, a popular approach is to avoid computing segmentations at the pixel level and instead reformulate the segmentation problem based on largerscale image primitives that are likely part of the same partition. Specifically, this can be accomplished by super pixels that aggregate pixels together in a way that faithfully adheres to image boundaries, maintaining or improving segmentation accuracy^{12}. The SLIC super pixel method^{12} chooses seed pixels across the image’s pixel grid to serve as the super pixel centers and then iteratively grows out and recomputes based on aggregation with neighboring pixels with similar visual features.
When defining super pixels, various authors have typically based the quality of their super pixel representation of the original image on two criteria. First, they seek to minimize under segmentation error^{13}, which quantifies the extent to which the super pixels bleed across original boundaries in the image. Second, they consider the correctness of the segmentation when applied to the super pixel representation of the image in terms of what would have been obtained using all pixels individually. For the super node network analog, we seek to define super nodes that also minimize under segmentation error and produce communities with high similarity to the result obtained using the full network.
Problem Formulation
For a network with N nodes that we will split into K communities, we seek to find a representation of the network with S super nodes optimizing the following two quantities. First, given the set s = {s_{1}, s_{2}, … s_{S}} of S super nodes and K communities, k = {k_{1}, k_{2}, … k_{K}} identified with the full network, we wish to minimize the under segmentation error,
where \(\cdot \) represents the count or number of nodes in the indicated set.
We let z^{Full} and z^{SN} denote the nodetocommunity assignments for the full network and super node network representations, respectively. To compute the similarity between z^{Full} and z^{SN}, we use Normalized Mutual Information (NMI)^{14}. That is, for partitions z^{Full} and z^{SN} with p and q communities, respectively, with N the R × C contingency table matrix where N_{ij} gives the count of the number of shared nodes in community i in z^{Full} and community j in z^{SN}, the NMI between the two partitions is
where N_{i.} and N_{.j} are the marginal sums over the corresponding rows and columns and \(N={\sum }_{i}\,{N}_{i.}={\sum }_{j}\,{N}_{.j}={\sum }_{ij}\,{N}_{ij}\).
Using Super Nodes In Community Detection
While there are a variety of approaches to identify communities, in this paper we specifically examine how the compressed version of a network can be used in modularity maximization and likelihood maximization. We denote the network adjacency matrix by A, where a_{ij} encodes the edge between nodes i and j. To maximize modularity in a network with N nodes, one seeks to find the nodetocommunity assignment vector z = [z_{1}, z_{2}, … z_{N}] that maximizes modularity, Q, defined by
where a_{ij} are the adjacency matrix elements encoding presence (and possibly weight) of a possible edge between nodes i and j, \({d}_{i}={\sum }_{j}\,{a}_{ij}\) gives the strength of node i, δ(z_{i}, z_{j}) = 1 if nodes i and j have the same community assignment and 0 otherwise, M denotes the number of edges and γ is the resolution parameter controlling community sizes. The Louvain algorithm^{7} is a stateoftheart heuristic for modularity maximization in terms of computational complexity and efficiency. It is an agglomerative method that begins with each node in its own community and merges together nodes and groups of nodes in each agglomeration step to best increase modularity at each level of agglomeration.
An alternative, statistical approach to identify community structure can be obtained through likelihood maximization by fitting a stochastic block model (SBM). Such models assume that the connectivity patterns between the N nodes in a network with K communities can be modeled according to their community memberships through a probability matrix π, where π_{kl} affects the edge connection probability between two nodes in communities k and l. Assuming no corrections due to node degrees (degreecorrected versions also exist^{15}), one seeks a partition, z, which maximizes,
where δ(z_{i} = k, z_{j} = l) is 1 if z_{i} = k and z_{j} = l, and 0 otherwise. One can maximize this objective with the expectation maximization (EM) algorithm, belief propagation, and efficiently with an iterative approach which, similar to Louvain, agglomerates blocks of nodes at each iteration^{6}. Specifically, at each iteration a MetropolisHastings acceptreject sampling approach is used to compute a probability of merging blocks based on how the merge affects the likelihood.
Limitations of Community Detection
These agglomerative heuristics for both modularity and likelihood maximization simplify a computationally challenging task but can still be time consuming for large networks and often give rise to large variability in the partitions returned across multiple runs of the algorithms. We seek to explore how a compressed network representation can improve these issues.
Motivated by super pixels, we wish to define seed nodes in networks that can be used as a starting point to grow out ‘super nodes’ to define a new, smaller network upon which we apply standard community detection algorithms. Creating a direct analog of super pixels in networks is challenging because the inherent geometry of a network can be quite different from the grid layout of an image (where simple neighborhood structures such as 4 or 8neighborhoods are typically used), and we need to ensure seeds are well distributed across the network. Further, while super pixels are largely constrained by the structure of the pixel grid (i.e. proximity between pixel pairs matter), their definition also incorporates extra image features to refine members of a super pixel set, whereas in network community detection we typically only have the edges of the network to work with. Finally, the performance of a super pixel representation of an image can be objectively validated from the quality of the corresponding segmentation result, with reference to humanspecified objects in images; in contrast, community detection is typically an unsupervised, exploratory data analysis technique with limited available notions of ‘ground truth’^{16,17,18}. As such, we must develop measures that can be used to validate the quality of the super node representation.
Related Work
Our objective to define a smaller network of super nodes is a form of network compression. Several references have explored useful ways to compress networks^{19,20,21,22,23,24}, with Yang et al.^{20} and Peng et al.^{22} using graph compression in the context of community detection. A review of network compression and summarization techniques is given in ref.^{25}. These compression approaches can either be classified as network preprocessing or network size reduction. Under these definitions, preprocessing refers to a method that uses all of the nodes to prepartition the network or agglomerate nodes to form a smaller network of preagglomerated nodes or’super nodes’. Creating a super node representation of the network can assist in visualization, gives control over how many nodes to split the network into, and allows for the input of a preprocessed network into standard network analysis tools. Alternatively, in network size reduction approaches, nodes are systematically removed and further analysis is performed on a smaller subnetwork. Such an approach may be useful if one has prior knowledge of unimportant or redundant nodes. Two network preprocessing methods that define super nodes are explored by Yang et al.^{20} and Lisewski et al.^{19}; but these approaches differ from our proposal in that they seek to define super nodes along with additional side information about relationships between node pairs. First, Lisewski et al.^{19}, describes ‘super genomic network compression’ to reduce the number of edges in a large protein interaction network. To do this, the authors identify ‘clusters of orthologous groups’ of proteins, or proteins that give rise to similar functions in different species and originated from a common ancestor. Members of an orthologous group are connected as a star network, with the center node as one member of the orthologous group. Furthermore, edges between orthologous groups are replaced by a single weighted link reflecting the pairwise group evolutionary similarity. Next, Yang et al.^{20} define super nodes by specifying ‘must link’ and ‘cannot link’ constraints between pairs of nodes, agglomerating as many nodes as possible sharing must link constraints while being cautious about agglomerating nodes that cannot link. Finally, Slashburn introduced by Lim et al.^{23} is another preprocessing approach for network compression that seeks to identify a permutation or ordering of the nodes, such that the adjacency matrix is preprocessed to have sets of clustered edges. To accomplish this task, hubs are removed iteratively and nodes are reordered so that high degree nodes appear first in the ultimate ordering of nodes.
Alternatively, approaches that perform network compression through network size reduction were presented in three works^{21,22,24}. Gilbert et al., introduce the ‘KeepAll’ method^{21}, which seeks to prioritize a set of nodes according to their importance in the network and retain only the smallest set of additional nodes required for the induced subgraph of prioritized nodes to be connected. Results in this paper highlight the method’s ability to remove redundant and noisy nodes that allow for clearer analysis of the original set of prioritized nodes. Peng et al.^{22} extract a smaller network through a kcore decomposition, and perform community detection on the subnetwork. While we also seek to perform community detection on a smaller version of the network, we seek to do this in the network preprocessing manner so that all nodes are effectively included as the input to the community detection algorithm, with flexibility to choose the number of super nodes or size to represent the network with. Given that the number of nodes in the kcore of a network decreases dramatically with an increasing k, there is not much flexibility in the scale or size of the network representation. Finally, Liu et al. also use a kcore based approach to decompose the network in a different manner. The authors define CONDENSE^{24}, an information theoretic based method to reduce a large network into a set of representative substructures. In particular, induced subgraphs resulting from the kcore based clustering technique are each treated as representative substructures.
Defining Super Nodes
To define the super node representation of an unweighted Nnode network, we first select \(S\ll N\) seed nodes through a 2core decomposition (discussed further in Methods). We then agglomerate the remaining N − S nodes around the seeds to create super nodes. Finally, we specify the network between these super nodes. Community detection can then be applied to the Snode network representation. Figure 1 visualizes this approach, with details provided in the Methods.
The aims of this work are twofold: First, we seek to develop an effective way to define a super node representation of a network that can then be used in standard community detection algorithms, such that the representation minimizes our defined under segmentation error and maximizes NMI with the partition that would have been obtained using the full network. Second, we wish to highlight several benefits of using such a compressed representation of the network in community detection tasks. In particular, we show that a super node representation of the network accomplishes the following.

1.
Decreased runtime for community detection: Even though recently developed heuristics for maximizing modularity^{7} and fitting SBMs^{6} are highly efficient relative to previous approaches for performing the same computational optimizations, these methods can still be time consuming for large networks. We aim to reduce runtime for large networks, moving most of the computational cost in practice from tasks scaling with the size of the network to alternatives scaling with the (much smaller) size of the super node representation.

2.
Decreased stochastic variability of community detection algorithm output: In large networks, there is often significant variability across multiple runs of the same algorithm (employing computational heuristics to solve NPComplete optimizations), as well as differences between various community detection algorithms. We expect applying community detection to a wellchosen super node representation to decrease the observed variability.

3.
High local agreement: In defining super nodes, we inherently assume that the identified communities should agree with the local network connectivity in that members of a neighborhood should be more likely to have the same community assignment, provided that the super nodes were constructed to minimize aggregation across community boundaries.

4.
Consistent with communities found using the full network: Despite the differences in line with the above features, the identified community structure should still be relatively similar to the distributions of results that would have been obtained through applying community detection to the full network.
Results
To demonstrate the effectiveness of super nodes, we performed several experiments to analyze the runtime, partition variability, alignment of communities with local network connectivity, and alignment of super node representation and full network communities. We considered 9 unweighted network data sets (see Table 1) from the Stanford Network Analysis Project database^{26} (Enron, Amazon, Dblp, Email, BrightKite, Stanford, Notre Dame) and Newman’s collection^{27} (As22, CMatter). We treat all networks as undirected. Note that some of these networks are large subgraphs extracted from the original networks. In particular, these subgraphs are defined by the union of all nodes of degree ≥2, their neighbors, and next nearest neighbors. We use the Louvain algorithm (https://github.com/vtraag/louvainigraph) for modularity maximization^{7} and the stochastic block model (SBM) inference (https://graphtool.skewed.de) described in ref.^{6}. Since the super node representation ultimately produces a weighted network, where the edge weights are counts computed based on the original network, both of these community detection algorithms are able to accommodate these kinds of edge weights.
Because we consider a variety of comparisons between partitions under multiple community detection methods and network representations, we provide a schematic in Fig. 2 of the performed comparisons in subsequent figures. In these comparisons, we use normalized mutual information (NMI) to quantify the similarity between a pair of partitions. In general, there are four possible combinations of community detection method/network representation that can be applied to identify communities. First, there are two choices of community detection algorithms, Louvain algorithm or stochastic block model fitting. There are also two choices for network representation, which is to use either the full network or super node network representation. In Fig. 2, we first visualize the community detection algorithm and network representation combinations with different types of symbols and colors. Each symbol is intended to represent a community detection produced partition of the network under a particular method/network representation. For example, pink squares are partitions obtained under the Louvain algorithm. Blue circles symbolize partitions according to the stochastic block model. The network representations used, full network or super node representation, are denoted by filled and hollow shapes, respectively. We assume that under each network/method combination, we can generate multiple partitions that will be somewhat different from each other. Amongst all partitions, we perform our analyses on all pairs of network partitions that satisfy the network/method combination specified by each of the eight comparisons represented in Fig. 2. Comparisons between pairs of networks (shown in brackets in the Figure) fall into one of three types. The first partition comparison we consider is shown in Fig. 2A, and seeks to quantify the similarity between a set of partitions generated with different network representations under the same community detection algorithm. The comparison computes NMI(z^{Full}, z^{SN}). For example, we consider the pairwise similarity between the full network and super node representations with the stochastic block model. This comparison helps to understand how well the super node representation yields the nodetocommunity assignments obtained using the full network. Next, we explore the inherent variability of community detection algorithms, which seems to especially arise among partitions of a large network. Figure 2B considers pairs of partitions under the same network representation and community detection algorithm. For example, we run the Louvain algorithm on the super node representation of the network multiple times and compare all pairs of partitions. Finally, in Fig. 2C, we consider pairs of partitions generated under the same network representation but with different methods. In one example, we compare partitions of the full network representation, where one partition used the Louvain algorithm and the other is obtained by fitting an SBM. Even though these methods are different by design, we want to measure the extent to which they capture common structures.
Objectively Comparing Partitions on Possibly Different Scales
A challenge in directly comparing the community partitions on the full and super node network representations is the difference in scales between the partitions. For example, using the full network typically produces significantly more communities than under the super node representation. In an attempt to compare community partitions with similar size distributions in the subsequent experiments, we can choose algorithm parameters to adapt the scales of the partitions obtained from the Louvain algorithm and SBM fitting. Conceptually, this is achieved by using the super node representation of the network to choose a comparable parameter to apply during the community detection task on the full network.
In community detection with the Louvain algorithm, we identified comparable resolution parameters (controlling community size) to apply to the full network that produce a size distribution agreeing as much as possible with the community partition in the super node network. We compute experimental results using both the default resolution parameter and the ‘matched’ parameter. While the default resolution parameter is γ = 1, in our analyses we computed partitions of the full network using several different \(\gamma \in [0.05,\,2.5]\). To choose the matched resolution parameter on the full network, we first find the community partition using the super node representation. For each partition, we then order nodes based on the sizes of the communities to which they belong. With this approach, all nodes from the same community are at the same position in the ordering. For each partition of the full network (at different resolution parameters), we then consider the similarity of this ranking with that from the super node communities, measuring this similarity by Kendall’s tau correlation. We identify the resolution parameter producing the highest Kendall’s tau correlation, referring to this resolution parameter as the ‘matched parameter’ in the remainder of the text, while we refer to the standard γ = 1 as the ‘default’ resolution parameter.
In fitting SBMs, we chose to fit a model with the same number of blocks that was found in the super node representation using the standard optimization and model selection strategies discussed in ref.^{6}. We refer to the ‘matched’ version as that using the number of blocks identified by the model selection on the super node representation, while the ‘default’ result is obtained using the model selection strategy on the full network. In subsequent experiments, we compare both the ‘matched’ and ‘default’ versions to ensure our results are not artificially influenced by the scale of the community sizes.
Experiments
First we measure the quality of the super node representation in terms of NMI and under segmentation error that were defined in equations 1 and 2. In Fig. 3, we vary the number of super nodes and examine the normalized mutual information (A.) (equation 2) and log under segmentation error (B.) (equation 1) in each of the 9 networks. The curves represent the mean NMI (A.) and mean under segmentation error (B.) over 5 super node representations, with the shaded area denoting standard deviation. Varying the number of super nodes between 100 and 600, the results generally indicate that as the number of super nodes increase, the network has 1) lower under segmentation error and 2) higher NMI (i.e. similarity) with the partition obtained using the full network. Each curve and line type in Fig. 3 specifies whether community detection was performed using the Louvain algorithm or by fitting an SBM. Note that this comparison between the partition with the full network and the super node representation within each method corresponds to Fig. 2A. To give some intuition about what value of NMI is considered good, we put our results in the context of the partition variability among 10 runs of the same community detection algorithm. In Fig. 3A, we indicate the mean pairwise NMI between multiple runs of the Louvain algorithm and SBM fitting with horizontal pink and blue lines, respectively (as described in Fig. 2B). For the most part, the pairwise NMI between partitions is not 1. Therefore, by increasing the number of super nodes, we can only expect to asymptotically approach the mean pairwise NMIs between multiple runs of the same algorithm on the full network. Randomly permuting the nodetocommunity assignment obtained under the super node representation (z^{SN,perm}) 1000 times and computing the NMI with the full network (i.e. NMI(z^{Full}, z^{SN,perm})) gives a mean NMI of approximately 0.01. Another interesting observation is that for both the Louvain algorithm and the SBM, the NMI results level out at between 300 to 400 super nodes.
In practice, one of the most desirable properties of a super node representation of the network is the decrease in the runtime of community detection algorithms in comparison to using the full network. In Fig. 4, we recorded the runtime required to identify communities with the Louvain algorithm and stochastic block model inference procedure under the full a 500 node super node network representations in each of the 9 networks. The Louvain algorithm is fast and scales well, at O(M) per iteration for M edges, with its relative speed and high modularity values contributing to its popularity. While the reported runtimes may seem quite modest, in practice it is common to run many realizations of the algorithm (hundreds, thousands, or even more for large networks) to explore resolution parameters and stochastic variation due to pseudorandom node order in the heuristic. We note a large increase in runtime for the full Stanford network, with over 2 million edges. As also observed in the figure, fitting a stochastic block model, at \(O(N\,{\mathrm{ln}}^{2}\,N)\) for sparse networks in this implementation^{6}, becomes significantly slower on the full networks with more than 200,000 edges.
While we see a significant improvement in community detection runtime from using super nodes for both methods, the benefit in the SBM fitting is particularly large, especially for the bigger networks (Dblp, Stanford, Email). In moving to the super node representation, we traded out largecoefficient scalingwithN community detection computations for those scaling with \(S\ll N\) (with possible increases due to the increased density of the super node representation), at the cost of constructing the super node representation. In particular, we observe the SBM runtimes on super nodes appear to be relatively independent of M. We note that each of the three steps building our supernode representation is O(M), so in the large graph limit the expected gain of our approach may be only a constant factor over Louvain iterations and the SBM fitting (up to logarithmic factors). In the present calculations, we have not endeavored to optimize the runtime to build our super node representations; even so, the three steps building the S = 500 super node representation of the Stanford network in our current implementation together take ~350 sec with CoreHD and ~200 sec using highestdegree nodes. While this alone might not seem like a large improvement compared to a single realization of running Louvain or fitting an SBM, the computational gains compared to generating multiple community partitions can be quite significant.
Next, we present evidence that there is variability in the partitions generated by multiple runs of the same community detection algorithm on the same network representation. We sought to quantify how the variability or pairwise similarity between multiple runs of the same algorithm under the super node representation changes as a function of the number of super nodes. Furthermore, we directly compared these results to variability observed in the full network under the default and matched algorithm parameters (Fig. 5A,B), respectively. Curves represent the mean pairwise NMI between all pairs of 10 computed partitions under the super node network representation and shading shows standard deviation. The pink and blue curves show the withinmethod comparisons on the super node network representation for the Louvain algorithm (‘Louvain vs Louvain’) and stochastic block model (‘SBM vs SBM’), respectively (comparison referenced in Fig. 2B). We were also interested in the variability of the partitions obtained between partitions of the super node representation found with different algorithms. This result is shown in the gold curve and labeled ‘Louvain vs SBM’ (comparison described in Fig. 2C). The horizontal lines show the mean pairwise similarity observed between all 10 runs of the Louvain algorithm and stochastic block model (pink and blue, respectively) on the full network (comparison Fig. 2B). Similarly, the horizontal gold line shows the mean pairwise similarity between all runs of the Louvain algorithm and SBM fitting on the full network (comparison Fig. 2C). Note that the curves are the same in both A. and B. because the matched and default parameters are incorporated only on the full network to best match the scale of the super node representation. The most significant improvement we observe under the super node representation is between runs of the Louvain algorithm and SBM fitting, suggesting that the new compressed representation of the network has prominent structural features that are robustly identified with both approaches. A high normalized mutual information between a pair of partitions indicates that the algorithms identified similar community structures. The Louvain algorithm is generally less variable than fitting an SBM, but we also observed decreased variability in the fitting of stochastic block models on the super node representation.
While we have emphasized benefits in the mechanics and usability of running standard community detection algorithms, we now seek to address whether the communities that we find using the super node representation align with local network connectivity so that neighbors are more likely to have similar community assignments and how this alignment compares with what we would have found by community detection on the full network. While we visualize this qualitatively for the As22 network in Fig. 6E–H, we also designed a prediction task to quantify this alignment. In this prediction task, we seek to take a nodetocommunity partition (from either the full or super node network representations z^{Full} or z^{SN}, respectively) and the full network \({\mathscr{X}}\) to see how accurately we can predict members of a community for different neighborhood sizes. For network \({\mathscr{X}}\) with nodetocommunity assignments z, we assign a probability distribution to each node over all of the communities under z. For a neighborhood order o (xaxis in Fig. 6), we say that node i has probability of being in community k, based on what fraction of its neighbors belong to that community under z. Then for each community in z, we perform a binary prediction task for whether each node of \({\mathscr{X}}\) should be assigned to that community, according to the computed probability distributions for all nodes with respect to that community.
We sweep the probability parameter, p, representing the required threshold probability for a node to achieve in order to be assigned to a community in this binary classification task. By sweeping p for each of the communities, we compute an ROC curve for each community and the corresponding areas under the curve (AUC). Finally, we use the minimum AUC value as our summary statistic of this task, with a high AUC value indicating that the neighboring regions of a node were strong predictors of community assignments, as shown in Fig. 6A–D. All experiments are performed on 5 networks (As22, Enron, CMatter, Dblp, Amazon) and for both the matched and default parameters (indicated by line type) in the full network. (Recall from section 3.1 that the matched parameters for the full network were chosen based on the super node partition results under default settings; hence, there is no corresponding ‘matched’ set for the super nodes in these plots.) We observe in most cases using the super node representation improves the minimum AUC value, indicating that communities obtained from this representation have higher agreement with local connectivity by this measure.
To qualitatively evaluate how the super node representation is able to ultimately partition the network into communities that are locally relevant, we visualize the As22 network, with nodes colored by communities identified under the full network (E,G) and super node representation (F,H) under Louvain (E,F) and SBM (G,H). Consistent with the quantitative results in Fig. 6A–D, we observe that the super node representation leads to an effective coarsegraining, with the community labels appearing to be qualitatively consistent across large regions of the network.
Comparison with other network compression methods
Thus far, we have shown how our approach to defining super nodes can be used to identify communities with high agreement to the result obtained using the full network. As we described in the beginning of this paper, the desire to compress networks is an area of active research, so we sought to compare the performance of our approach to some of the stateoftheart methods for this task. We focused on comparison with two alternative methods, due to their publicly available code and for being straightforward to implement. First, we compare our results to seeds selected with Slashburn^{23}, a node reordering method suited for network compression. Second, we compare to kcore based clustering (KCBC), introduced in ref.^{24}. Here, we will briefly define each method and how we used it for the task of defining super nodes.
Slashburn
Slashburn^{23} is a node reordering algorithm used for graph compression. This method uses hubs to decompose a network into connected components. Formally, Slashburn seeks to identify the ordering of the nodes such that a specified storage cost function is minimized. Iteratively, high centrality nodes are removed, while high degree nodes are ranked earlier in the ordering and low degree nodes are ranked later. We used the implementation of Slashburn available on github (https://github.com/theeluwin/bear). The input to Slashburn is the original network, A, and the output is a permutation of the node indices. From the Slashburn ordering of nodes, we defined seeds around which to grow our S super nodes by considering the top S Slashburn ranked nodes. Related to our approach using CoreHD, we used Slashburn in this context as a method to select seeds. For the problem of identifying representative network structures described in ref.^{24}, the authors used Slashburn to identify meaningful network substructures. In particular, they found substructures by considering the ego networks of the highly Slashburn ranked nodes.
KCBC
The kcore based clustering introduced by Liu et al.^{24} is an important part in their proposed network summarization method, ‘CONDENSE’ (Conditional Diversified Network Summarization). The overarching objective of CONDENSE is to concisely describe the network with a set of subgraph structures in such a way that achieves minimum description length. To identify the set of substructures, the authors decompose their network through a kcore decomposition. To do this, kcores are iteratively removed, starting by setting k equal to the max core number. At each of these steps, each connected component resulting in the present k is denoted as a decomposition set and treated as an induced subgraph. Edges in the network between nodes in the decomposition set are then removed. This process is repeated until all edges in the original network have been removed. Furthermore, each of the connected components extracted in this process comprises one member the set of representative network structures. We use KCBC to define seeds for our super node centers by extracting the highest degree node (according to degree in the full network) in each of the identified substructures. Note that unlike our own seed selection method and the Slashburn seed selection approach, we do not control how many super nodes to use to represent the network. Instead, we use only as many super nodes as there are substructures under the kcore based clustering approach.
First, we simply compared the set of seeds selected under CoreHD to the seeds obtained with Slashburn (denoted Slash) and through kcore based clustering (KCBC). For each of our 9 networks, we computed a set of seeds under each of the three methods and then computed the Jaccard similarity between the set of super nodes (S*) under each possible pair of the three methods. We considered sets of seeds from S = 100 to S = 600. As described above, we did not explicitly specify the number of super nodes, S, to identify with KCBC. These results are shown in Fig. 7. Each column represents one of the three possible pairwise comparison between the three methods. We noticed the strongest similarity between our method of finding seeds and KCBC. In general though, the sets of seeds returned are quite distinct.
Next, we sought to perform the analysis of super node quality described in Fig. 3 for the Slashburn and KCBC methods. Similar to the results presented in Fig. 3, we also performed analysis on NMI(z^{Full}, z^{SN}) and under segmentation error among super node results defined under CoreHD and Slashburn. Overall, we find the results on partition agreement (NMI(z^{Full}, z^{SN})) to be qualitatively similar regardless of how seeds are chosen. However, we note that for each of the 9 networks seeds chosen with the Core HD method resulted in higher agreement between community detection results on the full and super node network representations (NMI(z^{Full}, z^{SN})). Sometimes these differences are marginal, but other times they are significant. In Fig. 8, we show NMI(z^{Full}, z^{SN}) and the under segmentation error in panels A. and B., respectively. Defining super nodes with Slashburn has high NMI for both the Louvain algorithm and the SBM on the Amazon and Stanford networks. The maximum mean NMI(z^{Full}, z^{SN}) for Amazon and Stanford across various values of super nodes tested with the Louvain algorithm are 0.63 and 0.62, respectively. Using our core HD technique to define seeds and applying the Louvain algorithm gives NMI values of 0.69 and 0.62 for Amazon and Stanford, respectively. Similarly, the maximum mean NMI(z^{Full}, z^{SN}) for Amazon and Stanford networks with Slashburn under the SBM are 0.63 and 0.53, respectively. This compares to our results with CoreHD yielding maximum mean NMI(z^{Full}, z^{SN}) of 0.67 and 0.6 for the Amazon and Stanford networks, respectively. In the As22 networks, Slashburn produces maximum mean NMI(z^{Full}, z^{SN}) of 0.26 and 0.25 under the Louvain algorithm and SBM, respectively. Our results with Core HD are much stronger with maximum mean NMIs under Louvain and SBM of 0.56 and 0.46, respectively. These results can be more easily visualized in the Slashburn columns of Tables 2 and 3. We also observe larger variability in under segmentation error when defining super nodes with Slashburn.
In Fig. 9 we show the results for (NMI(z^{Full}, z^{SN})) and under segmentation error for the super nodes defined with KCBC. Again, under this method the number of super nodes is not specified and instead is determined based on the number of structures identified through the kcore based graph decomposition. Hence, for each network, we can not study how (NMI(z^{Full}, z^{SN})) and under segmentation error vary as a function of the number of super nodes. Instead, we defined super nodes 5 times according to KCBC and created bar plots for our two super node quality metrics in each of the 9 networks under the Louvain algorithm and the SBM. In these plots, error bars denote standard deviation. In general, the KCBC approach does not perform as well as CoreHD and Slashburn. Defining super nodes with KCBC results in the strongest NMI(z^{Full}, z^{SN}) in the Stanford network under both the Louvain algorithm and SBM with values of 0.5 and 0.55, respectively. However, on this network both CoreHD and Slashburn yield superior results. Under the Louvain algorithm the maximum mean NMI of CoreHD and Slashburn are 0.62. With the SBM the maximum mean NMI values are 0.6 and 0.53, respectively. Similar to the pattern we observed in Fig. 8, KCBC also does not perform very well on NMI(z^{Full}, z^{SN}) in the As22 network. We refer to the KCBC column in Tables 2 and 3 for a closer look at these results. Under segmentation error is comparable to the CoreHD and Slashburn results.
We summarize the differences in the super node network performance obtained with CoreHD as opposed to Slashburn or KCBC by looking closely at the maximum NMI(z^{Full}, z^{SN}) obtained across all possible numbers of super nodes. Creating a super node representation of the network with S = 600 leads to the maximum value of NMI(z^{Full}, z^{SN}) among all values of S we considered in our experiments. We report the NMI(z^{Full}, z^{SN}) of all 9 networks under the Louvain algorithm and the SBM for a representation with S = 600 super nodes in Tables 2 and 3, respectively. Given the differences among the three compared methods for defining seeds (CoreHD, Slashburn, KCBC), it is important in future work to understand the properties of particular networks that lead to differences in performance among these methods.
Discussion
We developed an approach for compressing a network into a super node representation that can be input to standard community detection algorithms. Using the smaller super node network reduces runtime and the variability between multiple runs of the same community detection algorithm. Our results also demonstrate that the communities in the super node network are better aligned with local network neighborhoods in a predictive sense, while still being in relatively good alignment with the partitions obtained using the full network.
Super nodes may be useful in a variety of contexts where large datasets are otherwise difficult to mine and interpret. For example, one might visualize the super node version of the network rather than the entire network, or use the members of a super node to identify redundant information in the network. Future work on super node representations can include the extension of this method to directed, signed, attributed, or bipartite networks. Additionally, one might consider a probabilistic model framework, attempting to infer latent super node assignments. Future work may also examine graph theoretic properties of super node representations in terms of how it aligns with the original network.
Methods
We create a super node representation through three steps, outlined in Fig. 1. First, we define seeds. Next, we ‘grow’ super nodes by assigning the remaining nodes to seeds. Finally, the network of super nodes is defined by agglomerating edges, and can then be used in a community detection algorithm.
Identify Seeds in the Network
To define S seeds, we aim to identify a set of nodes S* that satisfy the following criteria. First, seeds should have high centrality, or importance in the network. This ensures that we do not define a seed as some node on the periphery of the community and not similar to many other nodes in the network. Second, seeds should be effective at collapsing the network. Since our motivation for defining seeds is to serve as a center to agglomerate the remaining nodes around, each seed should be within close neighborhood regions for many nodes. Third, seeds should be well separated from one another so as to maximize the resulting compression. The most naive approach is to select nodes with highest degree, and this might be perfectly reasonable under various circumstances. Importantly, the selection of nodes with highest degree is computationally fast, requiring O(M) operations, summing over the M edges to calculate the degrees of the N nodes.
At slightly higher computational cost, we employ the CoreHD algorithm, which nearly optimally identifies nodes in network decycling and dismantling^{28}. CoreHD recursively identifies the highest degree node in the 2core. The 2core is simply the maximal connected subgraph in which all nodes have at least degree 2. At each iteration, we add the identified highest degree node to our seed set and remove it from the network used by further CoreHD iterations. After the removal of this node, the 2core is recomputed. The difference between selecting highest degree nodes and CoreHD for our present task may be small, both in terms of result and computational cost. In particular, because we will only select \(S\ll N\) seeds, there is reduced opportunity for the removals to lead to subgraphs with substantial differences between degree order in the graph and its 2core. Indeed, in our experience, simply selecting the highest degree nodes as the seeds often works well in practice. Because of the minimal extra computational cost for computing the 2core, we use CoreHD for all of our results shown here.
We were motivated to use the 2core based on the results in ref.^{28}, where in the context of the network decycling and dismantling problem, updating the 2core in each iteration after deleting high degree nodes is convenient and can quickly decompose the network into smaller components.
Grow Super Nodes Around Seeds
Once the set of seeds, S*, is defined, we ‘grow’ them out agglomerating nearby nodes to build the super nodes. We formally define a super node as a subset of one or more nodes from the original network, \({\mathscr{X}}\). To do this, seeds are grown out to engulf nodes in increasing neighborhood orders until either all nodes are assigned to a super node center or until a userdefined number of neighborhood orders has been considered. The maximum order, o_{max}, can be specified to control the maximum order neighborhood to consider in building the super nodes. If after o_{max}, there are still unassigned nodes, the unassigned nodes are not used to build the new super node network and are all ultimately assigned to the same periphery community as they are not considered relevant to the network core. Depending on the number of chosen super nodes, S, the degree distribution of the original network and the quality of the chosen seeds at collapsing the network, different networks will require repeating the agglomeration process for different neighborhood orders if one wants to ensure every node is assigned to a super node. In all of our experiments in this paper, we used o_{max} = 6, as we observed that for most networks this value successfully assigns the majority of the nodes to a super node. The output is a vector, s of length N, which gives the nodetosupernode assignments for the nodes in the original network.
Create Network of Super Nodes
Finally, after growing the super nodes, we create a new network representation of the super nodes. To do this, we create a weighted network, \({\mathscr{W}}\), where each super node is a node and the weight of the edge between a pair of distinct super nodes is the total weight of edges in the original network \({\mathscr{X}}\) between pairs of nodes assigned to the respective super nodes. For pairs of super nodes whose members have no edges between them in \({\mathscr{X}}\), there is no corresponding edge in \({\mathscr{W}}\). By definition, we construct \({\mathscr{W}}\) with no self loops. Moreover, the produced super node network representation produces a weighted network where the edge weights are counts.
After applying community detection to the super nodes, their community assignments are mapped back to their constituent N nodes of the original network, \({\mathscr{X}}\). We denote this final Nlength matched community assignment as z. In experiments in the Results section, we consider the nodetocommunity assignment z^{Full} obtained by applying community detection to the full network and the mapped result z^{SN} obtained by applying community detection to the super node representation.
Code availability
Our code for creating a super node representation of a network is available on github: https://github.com/stanleyn/SuperNode.
References
 1.
Fortunato, S. Community detection in graphs. Phys. Reports 486, 75–174 (2010).
 2.
Fortunato, S. & Hric, D. Community detection in networks: A user guide. Phys. Reports 659, 1–44 (2016).
 3.
Porter, M. A., Onnela, J.P. & Mucha, P. J. Communities in networks. Notices AMS 56, 1082–1097 (2009).
 4.
Snijders, T. A. & Nowicki, K. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. classification 14, 75–100 (1997).
 5.
Yang, J. & Leskovec, J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In Proceedings of the sixth ACM international conference on Web search and data mining, 587–596 (ACM, 2013).
 6.
Peixoto, T. P. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804 (2014).
 7.
Blondel, V. D., Guillaume, J.L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. statistical mechanics: theory experiment 2008, P10008 (2008).
 8.
Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).
 9.
Gleich, D. F. & Seshadhri, C. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 597–605 (ACM, 2012).
 10.
Newman, M. E. Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013).
 11.
Browet, A., Absil, P.A. & Van Dooren, P. Community detection for hierarchical image segmentation. In International Workshop on Combinatorial Image Analysis, 358–371 (Springer, 2011).
 12.
Achanta, R. et al. Slic superpixels compared to stateoftheart superpixel methods. IEEE Transactions on Pattern Analysis Mach. Intell. 34, 2274–2282 (2012).
 13.
Levinshtein, A. et al. Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis Mach. Intell. 31, 2290–2297 (2009).
 14.
Danon, L., DiazGuilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005, P09008 (2005).
 15.
Karrer, B. & Newman, M. E. Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011).
 16.
Yang, J. & Leskovec, J. Defining and evaluating network communities based on groundtruth. Knowl. Inf. Syst. 42, 181–213 (2015).
 17.
Peel, L., Larremore, D. B. & Clauset, A. The ground truth about metadata and community detection in networks. Sci. Adv. 3, e1602548 (2017).
 18.
Hric, D., Peixoto, T. P. & Fortunato, S. Community detection in networks: Structural communities versus ground truth. Phys. Rev. E 90, 062805 (2014).
 19.
Lisewski, A. M. et al. Supergenomic network compression and the discovery of exp1 as a glutathione transferase inhibited by artesunate. Cell 158, 916–928 (2014).
 20.
Yang, L. et al. Improving the efficiency and effectiveness of community detection via priorinduced equivalent supernetwork. Sci. Reports 7, 634 (2017).
 21.
Gilbert, A. C. & Levchenko, K. Compressing network graphs. In Proceedings of the LinkKDD workshop at the 10th ACM Conference on KDD, vol. 124 (2004).
 22.
Peng, C., Kolda, T. G. & Pinar, A. Accelerating community detection by using kcore subgraphs. arXiv preprint arXiv:1403.2226 (2014).
 23.
Lim, Y., Kang, U. & Faloutsos, C. Slashburn: Graph compression and mining beyond caveman communities. IEEE Transactions on Knowl. Data Eng. 26, 3077–3089 (2014).
 24.
Liu, Y., Safavi, T., Shah, N. & Koutra, D. Reducing large graphs to small supergraphs: a unified approach. Soc. Netw. Analysis Min. 8, 17 (2018).
 25.
Liu, Y., Safavi, T., Dighe, A. & Koutra, D. Graph summarization methods and applications: A survey. arXiv preprint arXiv:1612.04883 (2016).
 26.
Leskovec, J. & Krevl, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (2014).
 27.
Newman, M. Network data. http://www.personal.umich.edu/mejn/netdata/ (2013).
 28.
Zdeborová, L., Zhang, P. & Zhou, H.J. Fast and simple decycling and dismantling of networks. Sci. Reports 6 (2016).
Acknowledgements
This project was supported by the National Science Foundation under award ECCS1610762. Additional support was provided by the National Institutes of Health through Award Number R56DK111930. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
Author information
Affiliations
Contributions
All authors conceived the study and experiments. N.S. implemented the method, performed experiments, and analyzed the results. All authors wrote and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Stanley, N., Kwitt, R., Niethammer, M. et al. Compressing Networks with Super Nodes. Sci Rep 8, 10892 (2018). https://doi.org/10.1038/s41598018291743
Received:
Accepted:
Published:
Further reading

Compact structure for sparse undirected graphs based on a clique graph partition
Information Sciences (2021)

A coarse graining algorithm based on morder degree in complex network
Physica A: Statistical Mechanics and its Applications (2020)

Network positions in active learning environments in physics
Physical Review Physics Education Research (2020)

Prototype Cross Platform Oriented on Cybersecurity, Virtual Connectivity, Big Data and Artificial Intelligence Control
IEEE Access (2020)

Construction, comparison and evolution of networks in life sciences and other disciplines
Journal of The Royal Society Interface (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.