Abstract
Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and ondemand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an onchip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the highquality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above 10^{5} down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.
Introduction
One of the most promising approaches to building a quantum computer is based on superconducting qubits in the framework of circuit quantum electrodynamics^{1,2,3,4,5,6}. However, not all of the criteria for a functional quantum computer^{7} have been achieved simultaneously at the desired level. In particular, computational errors need to be mitigated with quantum error correction^{8,9}. Many quantum error correction codes require frequent initialization of ancillary qubits during the computation. Thus, fast and accurate qubit reset is a typical requirement in the efficient implementation of quantum algorithms. To date, several approaches for qubit initialization have been studied^{10,11,12,13,14}. Initialization to the ground state by waiting is a straightforward method but it becomes impractical in repeated measurements of qubits with long lifetimes. Therefore, active initialization is advantageous. Furthermore, it may be beneficial to design individual circuits for qubit control, readout, and initialization in order to avoid performancelimiting compromises in the optimization of the circuit parameters. In this work we focus on a specialized initialization circuit, which remains to be implemented in superconducting quantum processors.
Recently, a promising qubit initialization protocol based on dissipative environments was proposed in refs^{15,16}. In this proposal, a resistor coupled to a frequencytunable resonator quickly absorbs the excitation from the qubit when tuned in resonance. In this paper, we experimentally realize such a tunable dissipative environment and study its effect on a superconducting resonator. Tunable superconducting resonators have been demonstrated previously^{17,18,19,20,21,22} but without engineered dissipation arising from onchip normalmetal components. In addition to quantum computing, very sensitive cryogenic detectors^{23,24,25} may benefit from tunable dissipation for calibration purposes. Furthermore, tunable transmission lines are also useful in studying fundamental quantum phenomena^{26,27}.
Although dissipation is in some cases beneficial for quantum computing^{28}, lossy materials are typically harmful for qubit lifetimes during computation. Therefore, one needs to be able to switch the dissipation on and off deterministically. In stateoftheart experiments, quality factors, Q, above 10^{6} indicating very low dissipation have been achieved with coplanarwaveguide resonators^{29}. Various materials and methods have been studied for fabricating highQ resonators^{30,31,32,33}. Here we fabricate highQ resonators based on niobium on a silicon wafer. In addition, we tune the Q factor from above 10^{5} down to a few thousand by coupling the resonator relatively strongly to a dissipative element. Importantly, the integrated resistive element we introduce does not inherently degrade the Q factor when it is weakly coupled to the resonator compared to similarly fabricated resonators without any engineered resistive elements.
Results
Experimental samples
The structure of our device is presented in Fig. 1 together with the corresponding electrical circuit diagram which defines the symbols used below. The device consists of two coupled resonators, Resonator 1 with a fundamental frequency of 2.5 GHz, and Resonator 2 with a tunable frequency. Both ends of Resonator 1 couple capacitively (C_{C}) to external circuitry for scattering parameter measurements. The even harmonics of Resonator 1 interact with Resonator 2 since there is a voltage antinode at the center of the halfwave Resonator 1, and hence, the capacitive (C_{T}) coupling to Resonator 2 is significant.
The resonators are fabricated out of niobium in a coplanarwaveguide geometry. The modes of Resonator 2 are tunable owing to a superconducting quantum interference device (SQUID), acting as a fluxtunable inductance, placed in the middle of the resonator. The SQUID is integrated into the center pin of the waveguide and consists of two aluminium layers separated by an insulating aluminium oxide layer. When the resonance frequencies of the two resonators meet, we expect a degradation of the Resonator 1 quality factor because Resonator 2 is terminated with a dissipative onchip resistor (R = 375 Ω) made of copper. Importantly, the device is designed to retain a high quality factor of Resonator 1 whenever Resonator 2 is far detuned.
We study two samples, Sample A and B, which are nominally identical, except for the length of Resonator 2. We mostly focus on Sample A which has a wider tuning range of the quality factor of Resonator 1. The samples are measured at a cryostat temperature of approximately 10 mK. The theoretical model described in Methods reveals all the essential features of the two samples with a single set of parameters given in Table 1. See Methods for the details of the sample fabrication.
Flux dependence of the resonance frequencies
The first four resonances of Resonator 1 in Sample A are shown in Fig. 2 as a function of the magnetic flux through the SQUID. The first and the third mode at approximately 2.5 and 7.5 GHz, respectively, do not depend on the flux due to a voltage node in the middle of Resonator 1, i.e., at the coupling capacitor C_{T}. Thus, these modes are decoupled from those of Resonator 2. In contrast, the second and the fourth mode at 5 and 10 GHz, respectively, show clear flux dependence owing to the changing SQUID inductance, which in turn changes the frequencies of the modes in Resonator 2. If a dissipative mode in Resonator 2 approaches the frequency of a mode in Resonator 1, two distinctive features appear: the resonance in Resonator 1 shifts and broadens owing to the coupling to the dissipative mode. The experimental scattering parameter S_{21} is normalized as explained in Methods. The simulation based on the theoretical model (see Methods) shows excellent agreement with experimental data. The slight discrepancy between the experiment and the simulation mainly arises from the uncertainty in the exact values of the parameters given in Table 1.
The distinctively different flux dependence of modes 2 and 4 in Sample A is clarified by Fig. 3b, which shows the simulated S_{21} with only Resonator 2, i.e., in the limit C_{C} → ∞. Resonator 2 has a fluxdependent resonance near 4 GHz, which does not cross the second mode of Resonator 1 at 5 GHz. Nevertheless, it comes sufficiently near 5 GHz, which explains the frequency shift of mode 2 of Resonator 1. In contrast, Resonator 2 has a fluxdependent resonance near 10 GHz, very close to mode 4 of Resonator 1. The resonances intersect which results in dramatic changes in the fourth mode of Resonator 1. The second mode of Resonator 2 near 8 GHz has a current node at the center of the resonator, where the SQUID is located; thus, it is only very weakly dependent on the flux.
Supplementary Fig. 1 shows results similar to those in Fig. 2 for Sample A but for modes 2, 3, and 4 of Sample B. The simulations and experiments are also here in good agreement. However, the simulated mode 2 is substantially narrower than the experimental one. This broadening may arise from an unaccounted mode of the sample holder at a nearby frequency. Furthermore, there is some discrepancy in the phase of mode 4 near integer flux quanta. This discrepancy can be explained by uncertainty in the normalization procedure with very small amplitudes. The first mode is outside the frequency range of the used microwave components, and hence we do not show data for it. For a quantitative comparison of the measured and the simulated resonance frequencies in Samples A and B, Supplementary Fig. 2 shows the frequency shifts of modes 2 and 4 extracted from Fig. 2 and Supplementary Fig. 1. The flux dependence of the modes of Resonator 2 is similar in Sample B to that of Sample A, as shown in Supplementary Fig. 3b. However, the resonances do not intersect at 10 GHz although they are very close to each other.
Quality factors
We also analyze the quality factors as functions of flux, as shown for Sample A in Fig. 3a, and for Sample B in Supplementary Fig. 3a. The Q factors of the second and fourth mode are tunable unlike in the case of the first and third mode. The second mode of Sample A shows only relatively small variation near 10^{5} whereas the fourth mode can be tuned from above 10^{5} down to a few thousand. For Sample B, the flux dependence of the Q factor is similar. However, the experimentally determined loaded quality factor, Q_{L} for the second mode is substantially lower than the simulated value, i.e., the resonance peak is broader as discussed above. Better agreement between simulation and experiment can be obtained by introducing an additional loss mechanism as described in the caption of Supplementary Fig. 3.
The power dependence of the quality factors is analyzed in Fig. 3c for the four lowest modes in Sample A. The Q factors decrease with decreasing power as expected, presumably due to twolevel systems in the oxides and on the surfaces and interfaces^{33}. The Q factors may also be reduced by quasiparticle excitations^{34}. Nevertheless, they remain rather close to 10^{5} even at the singlephoton level, around −140 dBm. However, relatively high powers enable more accurate measurements of the losses caused by the resistor when the resonators are tuned into the weak coupling regime. Figure 3d shows the experimentally obtained loaded quality factor, Q_{L}, and the theoretically predicted external quality factor, Q_{ext}, corresponding to the losses through the coupling capacitors C_{C} as functions of the mode number n. Furthermore, the internal quality factor, Q_{int}, corresponding to the internal losses in the system is calculated from the equation \({Q}_{{\rm{int}}}^{1}={Q}_{{\rm{L}}}^{1}{Q}_{{\rm{ext}}}^{1}\). The internal quality factor slightly increases with the mode number and obtains values near 2.5 × 10^{5}. The minimum value of \({Q}_{{\rm{L}}}\lesssim 5\times {10}^{3}\) in Fig. 3a gives also the minimum value for Q_{int} since the internal losses of the system dominate when the resistor is strongly coupled to the fourth mode of Resonator 1.
The minimum and maximum Q_{int} correspond to photon lifetimes τ_{int} = Q_{int}/ω_{0} of 80 ns and 4 μs, respectively, at ω_{0} = 2π × 10 GHz when other losses are neglected. Furthermore, Q_{ext} corresponds to a photon lifetime of 6 μs. These photon lifetimes are long compared to the period of the coherent oscillations between the two resonators at resonance, τ_{T} = 30 ns (see Methods). Thus, the internal or external losses of Resonator 1 are not dominating over the coupling strength between the resonators. However, the simulated Q factors of the lowest modes of Resonator 2 in Fig. 3b are well below 40 at the zero flux bias and also at Φ/Φ_{0} ≈ 0.2 which corresponds to the crossing of the modes at 10 GHz. They obtain values above 100 only in the range 0.48 < Φ/Φ_{0} < 0.52 due to the ideally diverging SQUID inductance. Thus, the photon lifetime in Resonator 2 is below 0.6 ns at 10 GHz and at the relevant flux point. Consequently, the photons in Resonator 2 are dissipated quickly compared to the period of the coherent oscillations between the resonators, which prevents the formation of wellseparated modes hybridized between the resonators. Importantly, Resonator 2 mostly functions as a tunable dissipative environment for Resonator 1, the dissipation of which is limited by the coupling strength between the resonators.
Simulations with different resistances
We also simulate the effect of changing the termination resistance as shown in Fig. 4. The other parameters in the simulations are from Sample A. Note the different frequency range and colour scale compared to Fig. 2. In the case of a 100Ω termination resistance, there is very little shift in the resonance frequency as a function of the magnetic flux. Nevertheless, the width of the peak varies since the ideal SQUID inductance diverges, L → ∞ for Φ/Φ_{0} → 0.5, and therefore, it decouples the resistor from Resonator 1. At even lower resistances near 50 Ω (not shown), the termination is well matched to the characteristic impedance, and hence the description of Resonator 2 as a resonator becomes obscure. Instead, it appears as a broadband dissipative environment for Resonator 1. With increasing resistance, Resonator 2 obtains welldefined resonances, with zeroflux Q factors becoming of the order of 10^{3} at R = 10 kΩ. However, the maximum Q_{L} in Resonator 1 of 1.8 × 10^{5} does not vary due to the ideally infinite impedance of the SQUID at Φ/Φ_{0} → 0.5. In contrast at zero flux, Q_{L} increases from 1.0 × 10^{4} to 1.3 × 10^{5} as the resistance increases from 100 Ω to 10 kΩ. At R = 10 kΩ, the two resonators show a clear avoidedcrossing feature. There is a continuous crossover from a single modulating resonance at low resistance values to two resonances with an avoided crossing at high resistances. In the experiments, we have R = 375 Ω, which results in a single modulating resonance with some avoidedcrossinglike features.
Discussion
We have experimentally demonstrated tunable dissipation in a device consisting of two resonators in very good agreement with our theoretical model. We have studied two samples with slightly different parameters. Both of them allow us to substantially tune the loaded quality factors of the relevant resonances. In addition, the internal quality factor of one of the modes can be tuned from approximately a quarter of a million down to a few thousand. Importantly, we have designed the circuit such that the timescale for the coherent oscillations between the resonators is somewhat shorter than the photon lifetime in Resonator 1 and longer than the photon lifetime in Resonator 2. Therefore, Resonator 2 operates as an efficient dissipative environment for Resonator 1. Note that the spurious internal losses in the system are low as indicated by the high maximum quality factor. Thus, the fabrication of the onchip resistors is compatible with obtaining high quality factors using our fabrication process. To our knowledge, these are the highest demonstrated quality factors in superconducting resonators with integrated onchip resistors. In the future, the remaining unwanted losses can be reduced by further improving the process.
Here, we have demonstrated a tunable dissipative environment with a rather specific sample type. Nevertheless, the geometry and parameters can be relatively freely chosen to optimize the heat sink for different applications. For instance, it is possible to modify the losses by changing the resistance and capacitance values. Furthermore, the geometry of the system can be changed in order to obtain different coupling strengths for different modes. In addition, the resistor does not necessarily have to be directly coupled to Resonator 2. Instead, it can be outside the resonator and coupled with a small capacitance and a section of a transmission line. Furthermore, in case the resistance equals to the characteristic impedance of the transmission line resonator, the environment is effectively similar to a transmission line^{19}. It is also possible to have an offchip resistor with a microwave connector. However, an onchip resistor has several advantages. Firstly, it has a much smaller footprint than a waveguide to an external port. Furthermore, each additional connector per qubit will also increase the total complexity and cost of the circuit as well as hinder the scalability.
Although we consider the resistors only as sources of dissipation here, they may also be engineered to simultaneously function as parts of photonabsorbing normalmetal–insulator–superconductor tunnel junctions^{35}, or as quasiparticle traps in superconducting circuits^{36,37,38,39,40}. Fast tuning of the quality factors can be obtained by introducing microwave flux bias lines. An upper bound for the speed of the flux tuning is given by the plasma frequency of the SQUID, which is of the order of 30 GHz in our samples. In the future, qubits can be integrated into this system potentially enabling the demonstration of the protocol for fast and accurate initialization^{16}. The duration of the protocol depends on the desired fidelity, the accuracy of the flux bias sweep, and the transition rates, and it is predicted to be of the order of a microsecond for highfidelity initialization with realistic parameters^{16}.
Methods
Theoretical model and simulations
We analyze the electrical circuit shown in Fig. 1f, which also defines the symbols employed below. The input impedance of Resonator 2 can be obtained from standard microwave circuit analysis^{41}, and it is given by
where Z_{S} = iωL + 2/(iωC_{L}) is the impedance of the SQUID and the parallel plate capacitors connecting the SQUID to the center conductor, and Z_{term} = R + 1/(iωC_{R1}) + 1/(iωC_{R2}) is the impedance of the terminating resistor and the capacitances connecting it to the center conductor and the ground plane. Here, ω = 2πf is the angular frequency of the measurement tone, and γ is the wave propagation coefficient detailed below. We consider the SQUID as a tunable classical inductor. The inductance of the SQUID as a function of the magnetic flux Φ is ideally given by L(Φ) = Φ_{0}/[2πI_{0}cos(πΦ/Φ_{0})], where I_{0} is the maximum supercurrent through the SQUID, and Φ_{0} = h/(2e) is the magnetic flux quantum. The losses in the SQUID are assumed to be substantially smaller than those induced by the resistor; thus, they are neglected. One could also include a capacitance in parallel with the inductance in the model but it would have only a minor effect as discussed below.
We can calculate the scattering parameter from Port 1 to Port 2 using the ABCD matrix method^{41}
where the coefficients are obtained from
These equations are solved numerically with Matlab.
The simulation parameters are given in Table 1. We use identical parameters in the simulations for both samples except that the length x_{2} is different. The capacitances C_{C} and C_{T} are based on finiteelementmethod (FEM) calculations with design geometry and without native oxides, whereas C_{L}, C_{R1}, and C_{R2} are calculated using parallelplatecapacitor model by deducing the areas from scanning electron microscope images, and assuming the niobium oxide to have a typical thickness^{42} of 5 nm and relative permittivity^{43} of 6.5. The capacitance per unit length of the coplanar waveguide C_{l} is also based on a FEM simulation. The resistance R is measured with a dc control sample in a fourprobe setup at 10 mK. The test resistor is fabricated in the same process with the actual samples. The effective permittivity of the waveguide ε_{eff} is obtained from the nominal widths of the centre conductor and the gap, 10 μm and 5 μm respectively, using an analytical formula^{44}. The lengths x_{1} and x_{2} are design values. The internal quality factor of the first mode of Resonator 1 alone, Q_{int,1}, is based on measurements of control samples consisting of a single resonator, and it agrees well with the measured first mode of Sample A. The characteristic impedance of the external lines Z_{L} has a nominal value, and the characteristic impedance of the resonators Z_{0} has a design value in good agreement with the experimental results. The maximum supercurrent through the SQUID I_{0} is used as the only fitting parameter since it cannot be directly measured in the actual sample. Nevertheless, the critical current in the actual samples is relatively close to a switching current of approximately 180 nA measured with a dc setup in an essentially similar but separately fabricated control SQUID. Due to noise from a hightemperature environment via the dc lines, the temperature of the control SQUID may be higher than in the actual sample, thus providing an explanation to the difference in the critical current and the switching current. In addition, the difference may well be explained by unintentional differences in the fabrication. We can write the wave propagation coefficient as γ = ω_{1}/(2Q_{int,1} v_{ph}) + iω/v_{ph}, where \({v}_{{\rm{ph}}}=c/(\sqrt{{\varepsilon }_{{\rm{eff}}}})\) is the phase velocity, \({\omega }_{1}\mathrm{/(2}\pi )=c\mathrm{/(4}{x}_{1}\sqrt{{\varepsilon }_{{\rm{eff}}}})\) is the fundamental frequency, and c is the speed of light in vacuum.
The loaded quality factor can be defined as Q_{L} = ω_{0}E/P_{loss}, where ω_{0} = 2πf_{0} is the angular frequency of the resonance, E the energy stored in the resonator, and P_{loss} = −dE/dt the power loss. Without input power, the energy in the resonator evolves as a function of time t as E(t) = E_{0}exp(−ω_{0}t/Q_{L}), where E_{0} is the initial energy. Thus, the photon lifetime is given by τ_{L} = Q_{L}/ω_{0}, which corresponds to the total losses described by Q_{L}. Since the number of photons in a resonator n depends on the energy as \(E=n\hslash {\omega }_{0}\), where \(\hslash \) is the reduced Planck constant, and the power loss is bounded from above by the input power P_{in} in the steady state, one obtains an upper bound for the photon number as \(n < {Q}_{{\rm{L}}}{P}_{{\rm{in}}}/({\omega }_{0}^{2}\hslash )\). Therefore, the average photon number in a 10GHz resonator is near unity or below if the Q factor is 10^{5} and the input power is −140 dBm (c.f. Fig. 3). The external quality factor corresponding to the leakage through the coupling capacitors can be calculated as^{5} \({Q}_{{\rm{ext}}}=2{x}_{1}{C}_{{\rm{l}}}\mathrm{/(4}{Z}_{{\rm{L}}}{\omega }_{0}{C}_{{\rm{C}}}^{2})\). Although Q_{ext} calculated with this formula is quite sensitive to errors especially in C_{C}, it can be considered at least as an orderofmagnitude estimate. The external quality factor is related to the coupling strength describing the external ports, κ_{ext} = ω_{0}/Q_{ext} = 2π × 30 kHz at ω_{0} = 2π × 10 GHz. In addition, one can write the photon lifetime without other loss mechanisms as τ_{ext} = Q_{ext}/ω_{0} = 1/κ_{ext} = 6 μs. The coupling to the external ports can be compared with the coupling strength between the resonators at resonance calculated as^{45} \({g}_{{\rm{T}}}={C}_{{\rm{T}}}{V}_{1}{V}_{2}/\hslash =2\pi \times 10\) MHz, where \({V}_{i}=\sqrt{\hslash {\omega }_{0}\mathrm{/(2}{x}_{i}{C}_{{\rm{l}}})}\), i = 1,2, and ω_{0} = 2π × 10 GHz. Furthermore, the period for coherent oscillations between the resonators can be written as^{3} τ_{T} = π/g_{T} = 30 ns, where we have neglected dissipation.
The junction capacitance can be estimated using a parallelplate model with an approximate aluminium oxide thickness of 2 nm, a junction area of 0.25 μm^{2} estimated from micrographs, and a typical relative permittivity^{46} of 8.2, which yield 10 fF per junction. At zero flux and 5 GHz and 10 GHz, the inductive reactance of the SQUID is 40 Ω and 80 Ω, whereas the capacitor consisting of two junctions in parallel has a reactance of 2 kΩ and 0.9 kΩ, respectively. If included in the model, the capacitive shunt of the inductance could result in a very small change of the scattering parameter S_{21} at Φ/Φ_{0} ≈ 0.5 where the inductance ideally diverges. The change is small owing to the weak coupling of the resonators. Consequently, we do not include it in the model. Thus, the effect of the capacitance is effectively included in that of the inductance, which depends on the fitting parameter I_{0}. The plasma frequency of the SQUID can be obtained as \({\omega }_{{\rm{p}}}\mathrm{/(2}\pi )=\mathrm{1/(2}\pi \sqrt{LC})\), where L is the inductance and C the capacitance of the junctions.
Sample fabrication
Samples A and B are fabricated in the same process. The actual samples as well as the control samples are fabricated on 100mm Si wafers. First, native SiO_{2} is removed with ion beam etching, and 200 nm of Nb is sputtered onto the wafer without breaking the vacuum.
Second, the large patterns are defined using standard optical lithography. The optical lithography begins with hexamethyldisilazane priming, followed by spin coating the resist AZ5214E at 4000 rpm. The resist is exposed using a mask aligner in a hardcontact mode, and the exposed resist is removed with the developer AZ351B. In order to obtain a positive profile for the Nb edges, we apply a reflow bake at 140 °C before reactive ion etching. Once the large patterns are ready, we predice the wafer half way from the back side.
In the third step, the nanostructures are defined using electron beam lithography (EBL). After thorough cleaning of the wafer with a plasma stripper, a resist for EBL is spincoated to the wafer. The EBL resist consists of two layers: poly(methyl methacrylate) with 4% of anisole, and poly[(methyl methacrylate)co(methacrylic acid)] with 11% of ethyl lactate. We fabricate all the nanostructures in a single EBL write. For the development, we use a 1:3 solution of methyl isobutyl ketone and isopropanol. The metallization for the nanostructures is carried out with an electron beam evaporator in two steps. First, the Cu resistor is evaporated followed by the evaporation of the SQUID. We evaporate Cu only on the area in the vicinity of the resistor on the chip and keep the rest of the chip covered by a metal mask. Subsequently, we cover the resistor and evaporate the Al structures. The SQUID consists of two Al layers evaporated at two angles (±15°). The oxide layer for the Josephson junctions is obtained by oxidizing Al in situ in the evaporation chamber at 1 mbar of O_{2} for 5 min. The liftoff process is carried out in acetone followed by cleaning with isopropanol. The Cu resistor has a width of 250 nm, thickness of 30 nm, and length of 90 μm. The SQUID consists of two layers of Al with thicknesses of 40 nm each, and it has a loop area of approximately 50 μm^{2}.
Measurement setup
The measurement setup is shown in Supplementary Fig. 4. The measurements are carried out in a dry dilution refrigerator with a base temperature of approximately 10 mK, and the scattering parameters are measured with a vector network analyzer (VNA). We control the magnetic flux through the SQUID using an external coil attached to the sample holder, and the current through the coil is generated with a sourcemeasure unit (SMU). The sample is wirebonded to a printed circuit board shielded by a sample holder that is fabricated out of Auplated Cu. The sample holder is placed inside a magnetic shield to mitigate magneticfield noise.
Normalization of scattering parameters
All raw experimental scattering parameters are normalized. First, the winding of the phase as a function of frequency is cancelled for convenience by multiplying S_{21} with exp(i2πfτ) where \(\tau \approx 50\) ns. Second, the circle in the complex plane drawn by S_{21} when the frequency is swept through the resonance is shifted and rotated to its canonical position, where the circle intersects the origin and the maximum amplitude lies on the positive x axis^{47}. Any uncertainty in this shift causes relatively large errors near origin; hence, we use linear scale for experimental data as it emphasizes the large amplitudes with smaller relative error. Consequently, one can extract the Q factor using the phase–frequency fitting method discussed in ref.^{47}. In addition to the experimental Q factors, we use the same method for obtaining the Q factor also from the simulations, except that the very low Q factor of Resonator 2 is obtained from the width of the dip. In order to exclude uncertainty related to the cable losses, we normalize S_{21} by dividing it with \({{\rm{m}}{\rm{a}}{\rm{x}}}_{f,{\rm{\Phi }}}{S}_{21}\) separately for each mode. The magnetic flux is extracted from the periodicity of the of modes 2 and 4, and there can be an irrelevant offset of an integer number of flux quanta. One flux quantum corresponds to an electric current of approximately 2 mA in the coil used.
Data availability
The data are available upon request from the authors.
References
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53, https://doi.org/10.1038/nature08812 (2010).
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042, https://doi.org/10.1038/nature07128 (2008).
Blais, A., Huang, R.S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320, https://doi.org/10.1103/PhysRevA.69.062320 (2004).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167, https://doi.org/10.1038/nature02851 (2004).
Göppl, M. et al. Coplanar waveguide resonators for circuit quantum electrodynamics. J. Appl. Phys. 104, 113904, https://doi.org/10.1063/1.3010859 (2008).
Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69, https://doi.org/10.1038/nature14270 (2015).
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
Lidar, D. & Brun, T. (eds) Quantum Error Correction (Cambridge University Press 2013).
Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346, https://doi.org/10.1103/RevModPhys.87.307 (2015).
Valenzuela, S. O. et al. Microwaveinduced cooling of a superconducting qubit. Science 314, 1589–1592, http://science.sciencemag.org/content/314/5805/1589 (2006).
Johnson, J. E. et al. Heralded state preparation in a superconducting qubit. Phys. Rev. Lett. 109, 050506, https://doi.org/10.1103/PhysRevLett.109.050506 (2012).
Ristè, D., van Leeuwen, J. G., Ku, H.S., Lehnert, K. W. & DiCarlo, L. Initialization by measurement of a superconducting quantum bit circuit. Phys. Rev. Lett. 109, 050507, https://doi.org/10.1103/PhysRevLett.109.050507 (2012).
Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501, https://doi.org/10.1103/PhysRevLett.110.120501 (2013).
Bultink, C. C. et al. Active resonator reset in the nonlinear dispersive regime of circuit QED. Phys. Rev. Applied 6, 034008, https://doi.org/10.1103/PhysRevApplied.6.034008 (2016).
Jones, P. J., Huhtamäki, J. A. M., Salmilehto, J., Tan, K. Y. & Möttönen, M. Tunable electromagnetic environment for superconducting quantum bits. Sci. Rep. 3, 1987, https://doi.org/10.1038/srep01987 (2013).
Tuorila, J., Partanen, M., AlaNissila, T. & Möttönen, M. Efficient protocol for qubit initialization with a tunable environment. Npj Quantum Inf. 3, 27, https://doi.org/10.1038/s4153401700271 (2017).
PalaciosLaloy, A. et al. Tunable resonators for quantum circuits. J. Low Temp. Phys. 151, 1034–1042, https://doi.org/10.1007/s109090089774x (2008).
Healey, J. E., Lindström, T., Colclough, M. S., Muirhead, C. M. & Tzalenchuk, A. Y. Magnetic field tuning of coplanar waveguide resonators. Appl. Phys. Lett. 93, 043513, https://doi.org/10.1063/1.2959824 (2008).
Pierre, M., Svensson, I.M., Sathyamoorthy, S. R., Johansson, G. & Delsing, P. Storage and ondemand release of microwaves using superconducting resonators with tunable coupling. Appl. Phys. Lett. 104, 232604, https://doi.org/10.1063/1.4882646 (2014).
Wang, Z. L. et al. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503, https://doi.org/10.1063/1.4802893 (2013).
Vissers, M. R. et al. Frequencytunable superconducting resonators via nonlinear kinetic inductance. Appl. Phys. Lett. 107, 062601, https://doi.org/10.1063/1.4927444 (2015).
Adamyan, A. A., Kubatkin, S. E. & Danilov, A. V. Tunable superconducting microstrip resonators. Appl. Phys. Lett. 108, 172601, https://doi.org/10.1063/1.4947579 (2016).
Inomata, K. et al. Single microwavephoton detector using an artificial λtype threelevel system. Nat. Commun. 7, 12303, https://doi.org/10.1038/ncomms12303 (2016).
Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximityinduced Josephson junctions. Phys. Rev. Lett. 117, 030802, https://doi.org/10.1103/PhysRevLett.117.030802 (2016).
Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036, https://doi.org/10.1103/PhysRevX.6.031036 (2016).
Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379, https://doi.org/10.1038/nature10561 (2011).
Harrington, P. M., Monroe, J. T. & Murch, K. W. Quantum Zeno effects from measurement controlled qubitbath interactions. Phys. Rev. Lett. 118, 240401, https://doi.org/10.1103/PhysRevLett.118.240401 (2017).
Verstraete, F., Wolf, M. M. & Ignacio Cirac, J. Quantum computation and quantumstate engineering driven by dissipation. Nat. Phys. 5, 633, https://doi.org/10.1038/nphys1342 (2009).
Megrant, A. et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510, https://doi.org/10.1063/1.3693409 (2012).
Vissers, M. R. et al. Low loss superconducting titanium nitride coplanar waveguide resonators. Appl. Phys. Lett. 97, 232509, https://doi.org/10.1063/1.3517252 (2010).
Sandberg, M. et al. Etch induced microwave losses in titanium nitride superconducting resonators. Appl. Phys. Lett. 100, 262605, https://doi.org/10.1063/1.4729623 (2012).
Bruno, A. et al. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601, https://doi.org/10.1063/1.4919761 (2015).
Zmuidzinas, J. Superconducting microresonators: Physics and applications. Annu. Rev. Condens. Matter Phys. 3, 169–214, https://doi.org/10.1146/annurevconmatphys020911125022 (2012).
Grünhaupt, L. et al. Quasiparticle dynamics in granular aluminum close to the superconductor to insulator transition. Preprint at https://arxiv.org/abs/1802.01858 (2018).
Tan, K. Y. et al. Quantumcircuit refrigerator. Nat. Commun. 8, 15189, https://doi.org/10.1038/ncomms15189 (2017).
Goldie, D. J., Booth, N. E., Patel, C. & Salmon, G. L. Quasiparticle trapping from a singlecrystal superconductor into a normalmetal film via the proximity effect. Phys. Rev. Lett. 64, 954–957, https://doi.org/10.1103/PhysRevLett.64.954 (1990).
Ullom, J. N., Fisher, P. A. & Nahum, M. Measurements of quasiparticle thermalization in a normal metal. Phys. Rev. B 61, 14839–14843, https://doi.org/10.1103/PhysRevB.61.14839 (2000).
Rajauria, S. et al. Efficiency of quasiparticle evacuation in superconducting devices. Phys. Rev. B 85, 020505, https://doi.org/10.1103/PhysRevB.85.020505 (2012).
Riwar, R.P. et al. Normalmetal quasiparticle traps for superconducting qubits. Phys. Rev. B 94, 104516, https://doi.org/10.1103/PhysRevB.94.104516 (2016).
Patel, U., Pechenezhskiy, I. V., Plourde, B. L. T., Vavilov, M. G. & McDermott, R. Phononmediated quasiparticle poisoning of superconducting microwave resonators. Phys. Rev. B 96, 220501, https://doi.org/10.1103/PhysRevB.96.220501 (2017).
Pozar, D. Microwave Engineering. 4th edn, (John Wiley & Sons, Hoboken, 2011).
Bach, D. EELS investigations of stoichiometric niobium oxides and niobiumbased capacitors. Ph.D. thesis, Universität Karlsruhe (TH) (2009).
Graça, M., Saraiva, M., Freire, F., Valente, M. & Costa, L. Electrical analysis of niobium oxide thin films. Thin Solid Films 585, 95–99, http://www.sciencedirect.com/science/article/pii/S0040609015001650 (2015).
Gevorgian, S., Linner, L. & Kollberg, E. CAD models for shielded multilayered CPW. IEEE Trans. Microw. Theory Techn. 43, 772–779, https://doi.org/10.1109/22.375223 (1995).
Jones, P. J., Salmilehto, J. & Möttönen, M. Highly controllable qubitbath coupling based on a sequence of resonators. J. Low Temp. Phys. 173, 152–169, https://doi.org/10.1007/s1090901308893 (2013).
Landry, G., Dong, Y., Du, J., Xiang, X. & Xiao, J. Q. Interfacial capacitance effects in magnetic tunneling junctions. Appl. Phys. Lett. 78, 501–503, https://doi.org/10.1063/1.1336816 (2001).
Petersan, P. J. & Anlage, S. M. Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods. J. Appl. Phys. 84, 3392–3402, https://doi.org/10.1063/1.368498 (1998).
Acknowledgements
We acknowledge the provision of facilities and technical support by Aalto University at OtaNano  Micronova Nanofabrication Centre. We thank H. Grabert, M. Silveri, A. Wallraff, J. Kelly, J. Goetz and D. Hazra for discussions, and R. Kokkoniemi and S. Patomäki for technical assistance. We have received funding from the European Research Council under Starting Independent Researcher Grant No. 278117 (SINGLEOUT) and under Consolidator Grant No. 681311 (QUESS), the Academy of Finland through its Centres of Excellence Program (project nos 251748, 284621, 312059, 312298 and 312300) and grants (Nos. 265675, 286215, 276528, 305237, 305306, 308161 and 314302), the Vilho, Yrjö and Kalle Väisälä Foundation, the Technology Industries of Finland Centennial Foundation, and the Jane and Aatos Erkko Foundation.
Author information
Authors and Affiliations
Contributions
M.P. was responsible for sample design, fabrication, measurements, data analysis, and for the writing of the initial version of the manuscript. K.Y.T. and J.G. contributed to the sample design, fabrication, measurements, and analysis. S.M. contributed to the analysis, and M.J. to the measurements and analysis. L.G. deposited the Nb layer. M.P., K.Y.T., J.G., R.E.L., L.G., J.H., S.S., V.V., and M.M. developed the fabrication process. J.T. and T.A.N. contributed to the theoretical understanding of the system. M.M. provided initial ideas and supervised the project. All authors commented on the manuscript.
Corresponding authors
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Partanen, M., Tan, K.Y., Masuda, S. et al. Fluxtunable heat sink for quantum electric circuits. Sci Rep 8, 6325 (2018). https://doi.org/10.1038/s41598018244491
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598018244491
This article is cited by

State leakage during fast decay and control of a superconducting transmon qubit
npj Quantum Information (2021)

Heat rectification via a superconducting artificial atom
Communications Physics (2020)

Tunable photonic heat transport in a quantum heat valve
Nature Physics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.