Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decreased miRNA expression in Klinefelter syndrome


The widelyvariable phenotypic spectrum and the different severity of symptoms in men with Klinefelter syndrome (KS) suggest a role for epigenetic mediators. Therefore, the aim of this study is to evaluate the possible involvement of miRNAs in the clinical manifestations of KS. To accomplish this, we performed a transcriptome analysis in peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients, 10 aged-matched healthy men and 10 aged-matched healthy female controls with normal karyotype. After RNA extraction from PBMC and the preparation of RNA libraries, the samples were sequenced using next generation high-throughput sequencing technology. Expression profiling analysis revealed a significant differential expression of 2 miRNAs in KS compared to male controls. In particular, MIR3648 resulted significantly (q-value < 0.0001) down-regulated by −19.084- fold, while MIR3687was strongly down-regulated (q-value < 0.0001) considering KS patients. These results were confirmed by qRT-PCR. The functional analysis of the two transcripts showed that they seem to play a role in breast cancer, hemopoietic abnormalities, immune defects and adipocyte differentiation and fat cell maturation. Therefore, we speculate that both miRNAs may play a role in the immune and metabolic disorders and in the risk of breast cancer development in men with KS.


Klinefelter syndrome (KS) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 inevery 660 male births1,2. However, most of the men with KS remain undiagnosed or are being diagnosed later in life3. KS is characterized by a 47,XXY karyotype in about 80–90% of men, whereas the remaining cases are given by chromosome mosaicis.369*m (e.g. 47,XXY/46,XY), additional sex chromosomes (e.g. 48,XXXY; 48,XXYY; 49,XXXXY) or X chromosome structural abnormalities (e.g. 47,X,iXq,Y)4. The lowtestosterone levels observed in a high proportion of these men could explain the classical characteristics of KS, such as tall stature, gynecomastia, and infertility5, as well as some of other disorders that have an increased prevalence in KS, including osteoporosis6, metabolic syndrome, and type 2 diabetes mellitus7. The other disorders associated with KS, such as an increased incidence of mediastinictumors, neurocognitive and psychiatric disturbances, are less readily explained by hypotestosteronemia5,8. The wide phenotypic spectrum and the different severity of symptoms in non-mosaic KS patients suggest a role for epigenetic factors.

In recent years, a number of studies have investigated gene expression profiles of KS to improve the evaluation of the molecular basis of KS phenotype. Nevertheless, the mechanisms leading to germ cell degeneration and consequently azoospermia are still unclear. It has been hypothesized that an altered gene dosage, escaping inactivation on the supernumerary X-chromosome, might affect the development or cause degeneration of germ cells9. However, data on the role of X-linked genes on testicular function are inconsistent10. Therefore, evaluation of molecular regulators of gene expression, such as microRNA (miRNAs), could help to understand the molecular background in KS men. Nevertheless, so far,only few studies have explored the role (if any) of miRNAsin KS men.

miRNAs are non-coding small RNAs (about 22 nucleotides) that play a role in the post-transcriptional regulation of gene expressionand protein translation11,12. Abnormal miRNA expression has been reported to be involved in the occurrence and development of various diseases, such as cancer, cardiovascular disease, mental retardation, fetal growth restriction13,14,15,16,17,18. Growing evidence has shown that miRNAs play critical roles in regulating male germ cell development and are essential for epigenetic regulation of mitosis, meiosis and spermiogenesis19,20,21.

On this basis, the present study was undertaken to evaluate the expression of miRNAs in men with KS by high-throughput sequencing technology and to assess the possible involvement of miRNAs in the pathogenesis and clinical manifestations of KS. miRNA expression was compared to that of healthy age-matched men and women with normal karyotype.


We performed a transcriptome analysis on peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients and 10 male controls. Expression profiling analysis revealed the significant differential expression of 73 transcripts in KS men compared to controls, highlighting two clusters of differentially expressed genes composed by 60 down- and 13 up-regulated transcripts in KS.

Among the down-expressed genes, we found a significant differential expression of two miRNA precursors in KS compared to controls (Table 1). MIR3648 resulted significantly (q-value < 0.0001) down regulated by −19.084-fold, whereas MIR3687 was strongly down regulated (q-value < 0.0001) (Fig. 1).

Table 1 miRNAs differentially expressed in men with KS men compared to normal age-matched controls.
Figure 1

Screen-shot of MIR3648 and MIR3687. Screen-shot from IGV - Integrative Genomics Viewer for MIR3648 and MIR3687. Three control samples and three Klinefelter samples among the ten samples are displayed. The numbers along the side of each sample represent the maximum reads coverage in that specific region.

The results obtained by NGS analysis were confirmed by qRT-PCR. Indeed, miRNA 3648 and miRNA 3687 were significantly under expressed in KS compared to both male (Fig. 2, upper panels) and female (Fig. 2, lower panels) controls.

Figure 2

MIR3648 (upper panels) and MIR3687 (lower panels) qRT-PCR expression in leukocytes of men with Klinefelter syndrome compared to healthy male or female controls.


KS is characterized by varying degrees of cognitive, social, behavioural, learning difficulties and in adulthood also by primary testicular failure with small testes, hypergonadotropic hypogonadism, tall stature, and eunuchoid body proportions. The phenotype is variable ranging from “near-normal” to a significantly affected individual suggesting the involvement of epigenetic mediators in their presentation. The aim of the present study is,indeed, to evaluate the possible involvement of miRNAs in KS clinical manifestations.

To gain insight into the character of miRNAs in men with KS, we employed high-throughput sequencing technology to globally study miRNA expression profiles in KS patients compared to age-matched controls. Further sequence tag analysis revealed that two miRNAs were aberrantly expressed: MIR3648 had decreased expression and MIR3687 was not expressed in PBMCs from KS men compared to controls. Not all the other miRNAs showed differential expression between KS and normal controls, suggesting a rather stable miRNAs expression profile in KS men. Thus so far, knowledge on miRNAs in KS is limited. Both the two deregulated miRNAsmap on chromosome 21.

Men with KS have an increased risk of developing breast cancer and several studies have addressed this issue. The mechanism is not well understood. Several publications have looked at the miRNA expression profiles in breast cancer cell lines and tumor tissues. A closer inspection of the patterns of deep sequencing reads mapped to the miR-3648 suggests that it may not be a bona fidemiRNA, since it does not show a read pattern compatible with small RNA processing22. The role that miR-3648 may play in cancer is yet unknown. miR-3648 was described in solid tumors23, and it may be processed differently to suppress the expression of different target genes22. This opens up the possibility that miR-3648 exerts different functions in different kinds of cancer, or exerting different functions in the same tumor tissue thus causing, or contributing to tumor heterogeneity and plasticity24. Recently, Emmadi and colleagues found that miR-3648 positively correlates with estrogen receptor (ER)-positive breast carcinoma25. The expression characteristic of miRNA during the development of Down syndrome (DS) fetuses showed that miR-3648 and miR-3687 were up regulated more than 50% in the DS fetal cord blood mononuclear cells. This suggests that the differentially expressed miRNAs may be involved in the hemopoietic abnormalities and the immune defects of DS fetus26.

Adults with KS have five-fold increased risk for developing metabolic syndrome compared to age-matched controls6. Insulin resistance and metabolic syndrome are present in 24% and 7%, respectively, of 89 KS children as young as 4–12 years of age27. Both studies showed that KS patients had truncal obesity. miRNA have been suggested as therapeutic targets in metabolic syndrome due to their role in the maturation of fat cells and the differentiation of adipocytes from mesenchymal stromal stem cells. Recently, the role of metformin to suppress the differentiation of human preadipocytes was evaluated. After 2 weeks of 5 mM metformin treatment, 27 miRNAs were significantly upregulated and 6 miRNAs were down regulated in human visceral preadipocytes (HPrAD-vis) compared to cells control. In particular, the expression of miR-1246 and miR-3687 increased following metformin administration, while the expression of miR-378 family members decreased. This finding suggest that adipocyte differentiation in regulated by miRNAs. This result identifies miR-1246, miR-3687 and miR-422a as promising therapeutic targets for the treatment of visceral obesity28.

To date, several genes have been identified as targets of miR-3687, including PPARGC1B (PPARG coactivator 1β), MEMO1 (mediator of cell motility 1) and GDF7. PPARGC1B encodes a protein that stimulates the activity of several transcription factors and nuclear receptors, including ERα, nuclear respiratory factor 1 and glucocorticoid receptor. The encoded protein may be involved in fat oxidation, non-oxidative glucose metabolism and the regulation of energy expenditure. This protein is downregulated in prediabetic and type 2 diabetes mellitus patients29. Certain allelic variations in this gene increase the risk of development of obesity.

MEMO 1 is a copper-dependent redox protein with an essential role in migration and metastasis. It is involved in breast carcinogenesis via regulating insulin-like growth factor-I receptor-dependent signalling events30.

GDF7 encodes a secreted ligand of the transforming growth factor-β proteins superfamily. It is required for normal seminal vesicle development, branching morphogenesis and cell differentiation. Mice lacking a functional copy of this gene exhibit absence of some spinal dopaminergic neurons and brain defects, male sterility, and premature death31.


In conclusion, NGS analysis showed that non-mosaic KS men have a lower expression of MIR-3648 and MIR-3687 compared to normal controls. The functional analysis of the deregulated transcripts suggests that these miRNAs may play a role in the molecular mechanisms involved in germ cells degeneration, neurological disorders and the risk of development of cancer and obesity that are more likely to occur in KS patients. Results are to be considered preliminary because gene expression was measured in blood cells. Further validating and functional studies are needed to confirm these findings and to better understand the molecular basis of the variable phenotype found in KS patients.

Material and Methods

Selection criteria for patients and controls

This study was approved by the Ethics Committee of University teaching Hospital of “Policlinico-Vittorio Emanuele, University of Catania, (Catania, Italy), trial registration number 49/2015/PO (Register of the Ethics Committee opinions). All methods were performed in accordance with the relevant guidelines and regulations. All participants were asked for and provided their informed consent. We performed a transcriptome analysis on PBMCs of 10 non-mosaic KS patients and 10 aged-matched healthy controls. All KS patients (mean age 32.5 ± 3.0 years) had 47,XXY karyotype as shown by cytogenetic investigation conducted on at least 50 metaphase and five out of ten were treated with testosterone enanthate. Normozoospermic controls (mean age 32.0 ± 3.0 years) had a negative history for genetic disease, normal testicular volume and normal reproductive hormones (FSH, LH, total testosterone) levels. Ten healthy age-matched women (mean age 32.0 ± 2.9 years) were also recruited as female controls. All KS and male and female controls were Italians (Eastern Sicily) (Table 2).

Table 2 Clinical features and biochemical data of men with non-mosaic Klinefelter syndrome and age-matched controls.

RNA sequencing

Heparinized venous blood sample was withdrawn from each KS and male and female control. Peripheral blood mononuclear cells (PBMCs) were obtained using Ficoll-Paque (Ficoll Plaque PLUS – GE Healthcare Life Sciences, Piscataway, USA). Total RNA was extracted using the standard RNA extraction method with TRIzol (Invitrogen, Carlsbad, CA, USA). Before use, RNA concentration in each sample was assayed with a ND-1000 spectrophotometer (NanoDrop) and its quality assessed with the Agilent 2100 Bioanalyzer with Agilent RNA 6000 nano kit (Agilent Technologies, Santa Clara, CA, USA).

Indexed libraries were prepared from 1 µg/ea purified RNA with TruSeq Stranded Total RNA (Illumina) Library Prep Kit according to the manufacturer’s instructions. Libraries were quantified using the Agilent 2100 Bioanalyzer (Agilent Technologies) and pooled such that each index-tagged sample was present in equimolar amounts, with final concentration of the pooled samples of 2bnM. The pooled samples underwent cluster generation and sequencing using an Illumina HiSeq. 2500 System (Illumina) in a 2 × 100 paired-end (RNA-seq) format.


To validate the results obtained by Next-Generation Sequencing (NGS) analysis, we compared qRT-PCR in 10 KS patients and 10 normal subjects. In this second step, the subjects studied in the NGS analysis were included. Once again, KS cases and controls were recruited after family and/or personal informed consent. RNA extraction from leucocytes of peripheral blood was performed using RNeasy Mini Handbook (Qiagen Sciences, Germantown, USA), following the manufacturer’s protocol. Retro-transcription of 650 ng of total RNA from each sample was then performed in a final volume of 30 μl and the cDNA generated was used as a template for real-time quantitative PCR analysis with gene expression products. For each sample qRT-PCR reactions were carried out in duplicate using 4 μl of cDNA and QuantiTect Probe PCR Master Mix Kit (QIAGEN Sciences, Germantown, PA, USA) in a total volume of 25 μl. QRT-PCR experiments were performed using the Light Cycler 480 (Roche Diagnostics; Mannheim, Germany). The target MIR3648, MIR3587 and the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assays were obtained from Applied Biosystems (Carlsbad, CA, USA).

The thermal cycling conditions consisted of one cycle for 2 min at 50 °C, 1 cycle of 15 min at 95 °C and 42 cycles for 15 s at 94 °C followed by 1 min at 60 °C. The amplified transcripts were quantified using the comparative CT method and relative quantification analysis data were played using the comparative ΔΔCt method. The MIR expression level was normalized to GAPDH level and Target Mean Cp definition was used to indicate the mean normalized cycle threshold.

In our case–control study with qRT-PCR we have used all cases and controls and specifically we obtained a mean FC (Fig. 2). The mean was obtained with the Software Version 1.5 supplied with the LightCycler 480. We can conclude that the results confirm the data obtained by the NGS analysis and differences in values reflect the diversity of methods.

Data analysis

The raw sequence files generated (.fastq files) underwent quality control analysis using FastQC ( and the quality checked reads were trimmed with cutadapt32 v.1.10 and then aligned to the human genome (hg19 assembly) using STAR v.2.5.233, with standard parameters. Differentially expressed mRNAs were identified using DESeq. 2 v.1.1234. Firstly, gene annotation was obtained for all known genes in the human genome, as provided by Ensembl (GRCh37). Using the reads mapped to the genome, we calculated the number of reads mapping to each transcript with HTSeq-count v.0.6.135. These raw read counts were then used as input to DESeq. 2 for calculation of normalized signal for each transcript in the samples, and differential expression was reported as fold change along with associated adjusted p-values (computed according to Benjamini-Hochberg). Differential expression data were further confirmed using Cuffdiff36. Raw data are available in ArrayExpress database repository ( with accession number E-MTAB-6107.


  1. 1.

    Bojesen, A., Juul, S. & Gravholt, C. H. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin.Endocrinol.Metab. 88, 622–626 (2003).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Herlihy, A. S., Halliday, J. L., Cock, M. L. & McLachlan, R. I. The prevalence and diagnosis rates of Klinefelter syndrome: an Australian comparison. Med. J. Aust. 194, 24–28 (2011).

    PubMed  Google Scholar 

  3. 3.

    Lahlou, N., Fennoy, I., Ross, J. L., Bouvattier, C. & Roger, M. Clinical and hormonal status of infants with nonmosaic XXY karyotype. Acta Paediatr. 100, 824–829 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Maiburg, M., Repping, S. & Giltay, J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. FertilSteril. 98, 253–260 (2012).

    Google Scholar 

  5. 5.

    Groth, K. A., Skakkebaek, A., Host, C., Gravholt, C. H. & Bojesen, A. Clinical review: Klinefelter syndrome–a clinical update. J. Clin.EndocrinolMetab. 98, 20–30 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Van den Bergh, J. P. et al. Bonemineraldensity and quantitative ultrasoundparameters in patientswithKlinefelter’ssyndrome after long-term testosteronesubstitution. Osteoporos Int. 12, 55–62 (2001).

    Article  PubMed  Google Scholar 

  7. 7.

    Bojesen, A. et al. The metabolic syndrome is frequent in Klinefelter’s syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care 29, 1591–1598 (2006).

    Article  PubMed  Google Scholar 

  8. 8.

    Hasle, H., Mellemgaard, A., Nielsen, J. & Hansen, J. Cancer incidence in men with Klinefelter syndrome. Br. J. Cancer. 71, 416–420 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Aksglaede, L. et al. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum.Reprod. Update. 12, 39–48 (2006).

    Article  PubMed  Google Scholar 

  10. 10.

    Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A. & Marais, G. A. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc. Natl. Acad. Sci. USA 109, 5346–5351 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ambros, V. The functions of animal microRNA. Nature 431, 350–355 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bartel, D. P. microRNAs: target recognition and regulatory functions. Cell. 136, 215–233 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Szulwach, K. E., Jin, P. & Alisch, R. S. Noncoding RNAs in mental retardation. Clin. Genet. 75, 209–219 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Huang, L. et al. Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta 34, 624–627 (2013).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Siew, W. H., Tan, K. L., Babaei, M. A., Cheah, P. S. & Ling, K. H. MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome. Front.Cell. Neurosci. 7, 41 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Xu, Y. et al. Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. Int. J. Mol. Med. 32, 1115–1125 (2013).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Condorelli, G., Latronico, M. V. & Cavarretta, E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll.Cardiol. 63, 2177–2187 (2014).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kasinski, A. L., Adams, B. D. & Slack, F. J. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24, R762–776 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hayashi, K. et al. microRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738 (2008).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Maatouk, D. M., Loveland, K. L., McManus, M. T., Moore, K. & Harfe, B. D. Dicer1 is required for differentiation of the mouse male germline. Biol.Reprod. 79, 696–703 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Huszar, J. M. & Payne, C. J. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol. Reprod. 88, 15 (2013).

    Article  PubMed  Google Scholar 

  22. 22.

    Marco, A., Macpherson, J. I., Ronshaugen, M. & Griffiths-Jones, S. MicroRNAs from the same precursor have different targeting properties. Silence 3, 8 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Meiri, E. et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic. Acids. Res. 38, 6234–6246 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fonseca, I., Bell, A., Wani, K. & Bell, D. Global transcriptome and sequenome analysis of formalin-fixed salivary epithelial-myoepithelial carcinoma specimens. Gene. Chromosome. Canc. 54, 249–259 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Emmadi, R. et al. Correlative Analysis of miRNA Expression and OncotypeDx Recurrence Score in Estrogen Receptor Positive Breast Carcinomas. PLoS One 10, e0145346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Xu, Y. et al. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene 530, 278–286 (2013).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bardsley, M. Z., Falkner, B., Kowal, K. & Ross, J. L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta.Paediatr. 100, 866–870 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fujita, K. et al. Metformin-suppressed differentiation of human visceral preadipocytes: Involvement of microRNAs. Int. J. Mol. Med. 38, 1135–1140 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Villegas, R. et al. Genetic variation in the peroxisome proliferator-activated receptor (PPAR) and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families and type 2 diabetes. Ann. Hum. Genet. 78, 23–32 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    MacDonald, G. et al. Memo is a copper-dependent redox protein with an essential role in migration and metastasis. Sci. Signal. 7, ra56 (2014).

    Article  PubMed  Google Scholar 

  31. 31.

    Settle, S. et al. The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev. Biol. 234, 138–150 (2001).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17, 1 (2011).

    Article  Google Scholar 

  33. 33.

    Dobin, A. et al. STAR: ultrafastuniversal RNA-seqaligner. Bioinformatics 29, (15–21 (2013).

    Google Scholar 

  34. 34.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome. Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Trapnell, C. et al. Transcriptassembly and quantificationby RNA-Seqrevealsunannotatedtranscripts and isoformswitching-duringcelldifferentiation. Nat.Biotechnol. 28, 511–515 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information




L.C., R.A.C., S.L.V. and A.E.C conceived the experiment; M.S., R.C., G.G. and G.M. conducted the experiment, L.C. and A.E.C. analysed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Aldo E. Calogero.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cimino, L., Salemi, M., Cannarella, R. et al. Decreased miRNA expression in Klinefelter syndrome. Sci Rep 7, 16672 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing