Abstract
GreenbergerHorneZeilinger (GHZ) states and their mixtures exhibit fascinating properties. A complete basis of GHZ states can be constructed by properly choosing local basis rotations. We demonstrate this experimentally for the Hilbert space \({{\mathbb{C}}}_{2}^{\otimes 4}\) by entangling two photons in polarization and orbital angular momentum. Mixing GHZ states unmasks different entanglement features based on their particular local geometrical connectedness. In particular, a specific GHZ state in a complete orthonormal basis has a “twin” GHZ state for which equally mixing leads to full separability in opposition to any other basisstate. Exploiting these local geometrical relations provides a toolbox for generating specific types of multipartite entanglement, each providing different benefits in outperforming classical devices. Our experiment investigates these GHZ’s properties exploiting the HMGH framework which allows us to study the geometry for the different depths of entanglement in our system and showing a good stability and fidelity thus admitting a scaling in degrees of freedom and advanced operational manipulations.
Introduction
Entanglement is a fundamental concept of quantum theory and lies at the heart of many key discoveries, ranging from quantum teleportation^{1} to quantum dense coding^{2}, quantum computation^{3,4,5}, and quantum cryptography^{6,7}. Entanglement is not limited to distinguishable physical particles but exhibits itself also between different degrees of freedom^{8,9,10,11}. Mathematically speaking, a physical system can be separable or entangled with respect to a chosen factorization of the tensor algebra which describes the quantum state. Usually, the experimental setup fixes the factorization and applying local unitaries does not change the entanglement properties. While for bipartite systems the query of separability is straightforward, namely the state is separable with respect to a particular bipartition or not, this concept is more complicated for multipartite systems.
States that are not even biseparable with respect to all possible bipartitions are called genuine multipartite entangled states. These entangled states are of special interest since they are the extreme version of entanglement, that is all subsystems contribute to the shared entanglement feature^{12,13,14}. Among this class there are further refinements due to very distinct physical properties, useful examples are the GreenbergerHorneZeilinger (GHZ) states^{15}, the graph states, the Wstates or Dickestates.
Here we focus on GHZ states by employing two physical photons for which we consider the polarization degree of freedom and a twodimensional subspace of the orbital angular momentum (OAM) degree of freedom for each photon^{16}. Thus we explore a 16 dimensional Hilbert space with the structure \({{\mathbb{C}}}_{2}^{\otimes 4}\). In this case, one has three different “depth” of entanglement: the state can be triseparable, biseparable or genuine multipartite entangled between the different subsystems. We show how these different types of entanglement can be detected via specific nonlinear entanglement witnesses. Moreover, we show how mixing states with different local information can be utilized to design states with specific entanglement properties. In detail, mixing two GHZ states does not result always in states with same properties concerning entanglement. Controlling the different types of entanglement properties of the finally generated state will be the key for interesting applications. Alternatively, from the theoretical perspective it is also interesting to ask what is the minimum number of pure states in a convex combination needed for a state to have specific properties concerning entanglement^{17,18}.
Multipartite Entanglement
In this work we focus on fourqubit GHZ states (which is identical in this case with a graph state)^{19}, having e.g. the form
By using a construction based on a minimal specific set of local basis rotations^{20} we can obtain the remaining 15 orthogonal basis states, e.g. \(GH{Z}_{i,j,k,l}\rangle ={\mathbb{1}}\otimes {W}_{\mathrm{0,}i}\otimes {W}_{\mathrm{0,}j}\otimes {W}_{k,l}GH{Z}_{0000}\rangle \), where the Weyl operators W correspond in our case to the unity operator and the Pauli matrices (W _{0,0} = \({\mathbb{1}}\), \({W}_{\mathrm{0,1}}=X\), \({W}_{\mathrm{1,0}}=Z\), \({W}_{\mathrm{1,1}}=iY\)). The construction procedure reveals how the states within a complete basis set relate by local unitary transformations. Starting with a seed state, e.g. \(GH{Z}_{0000}\rangle \) and by applying one of the three Pauli matrices to the fourth subsystem, we can obtain the other three mutually orthogonal GHZ states. How can we obtain the remaining 16 − 4 basis states? We have exploited all possible rotation with respect to the fourth subsystem, therefore we have to exploit another subsystem, e.g. the third one. However, certainly not all Weyl operators will lead to GHZ states that are orthogonal to the first four ones, indeed there is only one solution. Applying this specific Weyl operator, in our case W _{0,1}, to the third subsystem we obtain a GHZ state mutually orthogonal to the four other ones. Now we can rotate again locally in the forth system, all these GHZ state are mutually orthogonal. Proceeding by applying in the second subsystem a specific Weyl operator (in our case W _{0,1}) and again locally rotating in the fourth system we obtain a third set of four GHZ states that are mutually orthogonal to all other GHZ states. How can we obtain the remaining four GHZ states? It can be done by a combination of rotating in the second and third system via W _{0,1}, respectively. Thus, our 16 GHZ basis states can be grouped into four with respect to a partition into the four subsystems. An experimenter having access to only one subsystem can obtain only a set of four GHZ basis states. To obtain a further set of four GHZ basis states one needs to have access to another subsystem. This is also visualized in Fig. 1.
Of course there is a democracy between any representation of a GHZ state (physics does not depend on the basis choice), however, and this is what we want to demonstrate, in the case we are superposing or mixing these different mutually orthogonal GHZ states, the properties concerning entanglement do depend on the specific local connection. Differently stated, we can exploit this local information to generate a state with specific properties with respect to entanglement. An experimenter has to take notice of the local information specific to his/her setup, this is what we will demonstrate experimentally by exploiting the quantum entanglement between two photons that are both in an internal entanglement between polarization and OAM degree of freedom a form of entanglement between two complex vectorial fields^{11}.
The first thing to note is that when we mix two GHZ states of a complete basis set, the resulting state is still genuine multipartite entangled except when these states are equally mixed. In equal mixtures we still have two distinct categories:
Type I (“twin” GHZ states): The resulting mixed state is fully separable.
Type II (“untwin” GHZ states): The resulting mixed state is entangled, though no longer genuine multipartite entangled, but still tripartite entangled.
Indeed type I states occur only for a single mixture, namely if one has chosen one GHZ state in the set there exists exactly one which erases the entanglement property, a “twin” GHZ state. This is immediately clear when considering the state defined in Eq. ((1)) and the one with a relative minus sign in the superposition. An equal mixture leads to zero off diagonal elements of the corresponding density matrix and, consequently, to a product state. Obviously, in all other cases we have four nonzero offdiagonal elements for which it is not straightforward to detect their separability properties. For that we exploit the HMGH framework^{21} providing a set of nonlinear witnesses for detecting kseparability. For a given matrix ρ to be kseparable the functions \({I}_{k}(\rho )\) (See appendix) have to be lower or equal zero, consequently a positive value detects kinseparability.
For GHZ states the criterion I _{2} turns out to be optimal, namely the maximal value can be reached \({I}_{2}(GHZ\rangle )=1\), whereas it is zero for any fourqubit Dickestate with one excitation and \(\frac{1}{2}\) for any fourqubit Dickestate with two excitations (both states are known to be genuine multipartite entangled). Differently stated, I _{2} can be turned into an optimal witness for detecting the GHZtype entanglement of a genuinely multipartite entangled state. For our purpose, the linearized version of this witness I _{2} denoted as \({\tilde{I}}_{2}\) is sufficient due to the high symmetry of the considered states and allows us to significantly reduced the amount of measurements to perform. However, note that for the other witnesses I _{3,4} we apply the nonlinearized versions. Written in Pauli’s operators the linear witness detecting genuine multipartite entanglement becomes
where we used the abbreviation XXXX for X ⊗ X ⊗ X ⊗ X and so on. \({\tilde{I}}_{2}(\rho )\) detects genuine multipartite entanglement if it is greater than zero and gives the maximal value (equal to one) only for the GHZ state in the representation of Eq.((1)) (by exploiting local unitary operations the criterion can be made optimal for any basis representation of the GHZ state).
In the following we describe the production of all orthogonal basis states and prove the genuine multipartite entanglement property by the above introduced criteria via different methods. Finally we discuss how the entanglement properties change in the case of mixed GHZ states.
Experimental generation of GHZ states
GHZ states can be generated with different physical systems^{22,23,24,25,26}. Here we generate photonic fourqubit GHZ states by entangling polarization and OAM within each photon of an entangled photon pair. To this end we exploit the qplate^{27,28}, a birefringent slab with a suitably patterned transverse optical axis and a topological singularity at its center. Such device entangles or disentangles the OAM with the polarization for each photon. The experimental setup is shown in Fig. 2a.
The pump laser (wavelength λ = 397.5 nm) is produced by a second harmonic generation (SHG) process from a Ti:sapphire modelocked laser with a repetition rate of 76MHz. Type II spontaneous parametric down conversion (SPDC) in a βbarium borate (BBO) crystal is exploited to generate photon pairs entangled in polarization. These photons (λ = 795 nm) are filtered in the wavelength and spatial modes by using filters with \({\rm{\Delta }}\lambda =3\) nm and singlemode fibers, respectively. The resulting state can then be written in the polarization and OAM basis by
where \(R,\ell \rangle \) \((L,\ell \rangle )\) denotes a photon with circular right (left) polarization and carrying \(\ell \hslash \) of OAM and the subscripts a, b refers to the two different photons. Each photon is sent to a qplate whose action is given by
where, for uniformity of notation, we wrote r (l) to indicate OAM eigenstates with \(\ell =1\,(+\mathrm{1)}\). More details on the general transformation that can be operated by a qplate can be found in^{29}. As a consequence the state ((3)) is transformed into a GHZ state, \(GH{Z}_{0101}\rangle =1/\sqrt{2}(RlLr\rangle LrRl\rangle )\) (omitting the photon label subscripts). The two first qubits represent the polarization and OAM degrees of freedom for one photon, whereas the third and fourth qubits represent the polarization and OAM degrees of freedom for the second photon. By applying specific local transformations to GHZ _{0101} using half wave plates (HWP) and quarter wave plates (QWP) we obtain any other GHZ state of a complete set of fourqubits GHZ states. After this stage, each photon is analyzed in the polarization and OAM degrees of freedom. The polarizationanalysis stage is composed of QWP, HWP and polarizing beam splitter (PBS). Since the qplate acts as an interface between OAM and polarization spaces, it converts the OAMencoded information into polarization that, in a further step, we analyze with a second polarization analysis stage^{30,31}. Finally, the photons are coupled into single mode fibers to ensure that only states with \(\ell =0\) are detected. Our experimental setup allows thus to perform measurements of all fourqubit operators (Pauli’s matrices), consequently including full quantum state tomography (FQST). The measurement of any four Pauli operators needs in general 16 independent measurements. The witness given in Eq. (2), however, needs only 144 measurements (not 16 · 16 = 256 since the unit and Z operator have common eigenvectors). In strong contrast, a full quantum state tomography requires 1296 measurements.
Experimental Results
In a first step we have generated all 16 GHZ basis states and measured the local observables of the witness (both using raw data and with dark counts corrections). The results are listed in the Table 1 and show a high stability among all 16 GHZ states. The averaged over all basis states is \({\tilde{I}}_{2}=0.90\pm 0.06\) (\({\tilde{I}}_{2}=0.80\pm 0.05\)) with (without) dark counts correction, respectively. Moreover, we tested the robustness by applying three chosen witnesses to all 16 GHZ basis states. As expected we found \({\tilde{I}}_{2} > 0\) only for those states where the basis representation matches i.e the basis representation of the state matches with the basis choice for the observable, whereas in all other cases it is clearly negative, see Fig. 3.
Furthermore, we have performed a full state tomography of two selected basis states (see Fig. 2b) and applied the theoretical nonlinear witness to the obtained state \({\rho }_{exp}^{{\rm{FQST}}}\), i.e. \({I}_{2}({\rho }_{exp}^{{\rm{FQST}}})\), and as well the linearized witness \({\tilde{I}}_{2}({\rho }_{exp}^{{\rm{FQST}}})\). The data are given in Table 2 and show similar results independent of the method. We checked the purity \(P=Tr(({\rho }_{exp}^{{\rm{FQST}}}{)}^{2})\) of the two states and found: \(P({\rho }_{0101})=0.905\pm 0.002\), \(P({\rho }_{0111})=0.915\pm 0.002\). A standard maximum likelihood method has then been exploited to numerically evaluate each density operator^{32}. The values are comparable and explain the deviations from the optimal value \({\tilde{I}}_{2}(GHZ)=1\). In summary, all produced states are certainly genuine multipartite entangled, i.e. there exist no bipartition via any partition of all involved degrees of freedom. Since all measured values are in good agreement by taking into account the purity of the generated states, the data clearly show the independence on the degrees of freedom chosen and local basis choices.
Entanglement properties of mixtures of GHZ states
For revealing the local substructure of mixtures of GHZ states we considered mixtures of white noise and three GHZ states ρ _{ i }
where α, β and γ are statistical weights. Such a state can be experimentally obtained by collecting photons for each component for a time proportional to its weight in the mixture or, equivalently, by combining raw data for each component with the appropriate weights. In order to perform a complete study of the state geometry we adopted the latter approach which allows to span the whole parameters space (\(\alpha ,\beta ,\gamma \)). As stated in the beginning a chosen GHZ state has always exactly one geometrical twin. Without loss of generality we assume that ρ _{1}, ρ _{2} are such a pair, i.e. the equal mixture of both states results in a separable state. Whereas a mixture of ρ _{1} with any other GHZ state ρ _{3} is not k = 3separable. Figure 4 shows the theoretical and experimental geometry for a given choice of \(\rho (\alpha ,\beta ,\gamma )\) (section (a)) and its corresponding submixtures of two GHZ with (and without) white noise (sections (bd): \(\rho (\alpha ,\beta )\), \(\rho (\alpha ,\gamma )\) and \(\rho (\beta ,\gamma )\). This figure shows how mixtures of twin and untwin GHZ exhibit different behaviors: mixtures of twin pairs (b) are fully separable if weights in the mixture have the same value, while this is not true if we look at mixtures of untwin pairs (c, d) in which the states are biseparable but not threeseparable considering again mixtures having the same weights for both the states. Finally one can notice that the regions of biinseparability coincide for twin or untwin mixtures, although regions of three and fourinseparability are different in the two cases. Moreover, looking separately to twin and untwin mixtures, three and fourinseparability coincide in absence of noise, showing a different behavior when the mixture becomes noisy.
Discussions and Outlook
We have considered states in a fourtensored Hilbertspace where each subspace is described by two dimensions which we physically achieved by manipulating the polarization and orbital momentum degrees of freedom of two photons. Producing a complete set of orthogonal GHZ states and their detection via entanglement witnesses showed a high quality in always achieving states with same entanglement properties but locally different geometries. Local differences are important when mixing those states. In particular we proved experimentally that among the 16 GHZ states each GHZ state has always a twin that when mixed with equal weights gives a fully separable state. In opposition any other balanced mixtures of GHZ states destroy genuine multipartite entanglement, but not any other type of entanglement. Certainly, this local information between orthogonal basis states is relevant for any experimental setup since it is experimentally accessible without quantum state tomography and as we show can be designed to generate particular types of entanglement paving the way to new applications involving topics such as deviceindependence witnesses^{33}, secret sharing protocols based on the mixtures of GHZ states^{34} and for quantum algorithms exploring different types of multipartite entanglement^{35,36}.
Appendix
In ref.^{37}. it was proven that any state ρ (mixed or pure) that is kseparable has to satisfy \({I}_{k}(\rho )\le 0\) where for a 16 × 16 matrix ρ the functions (optimized for the state in Eq. 1 of the main text) read explicitly
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
 1.
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and einsteinpodolskyrosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
 2.
Bennett, C. H. & Wiesner, S. J. Communication via one and twoparticle operators on einsteinpodolskyrosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).
 3.
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
 4.
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
 5.
Feynman, R. P. Simulating physics with computers. International journal of theoretical physics 21, 467–488 (1982).
 6.
Ekert, A. K. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).
 7.
Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).
 8.
Barreiro, J. T. et al. Generation of Hyperentangled Photon Pairs. Phys. Rev. Lett. 95, 260501 (2005).
 9.
Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
 10.
Vallone, G. et al. Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009).
 11.
D’Ambrosio, V. et al. Entangled vector vortex beams. Phys. Rev. A 94, 030304 (2016).
 12.
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
 13.
Hiesmayr, B. C., Huber, M. & Krammer, P. Two computable sets of multipartite entanglement measures. Phys. Rev. A 79, 062308 (2009).
 14.
Gühne, O. & Tóth, G. Entanglement detection. Physics Reports 474, 1–75 (2009).
 15.
Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going beyond bell’s theorem. Bell’â‚¬â„¢s Theorem, Quantum Theory, and Conceptions of the Universe 69–72 (1989).
 16.
Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).
 17.
Baumgartner, B., Hiesmayr, B. C. & Narnhofer, H. A special simplex in the state space for entangled qudits. J. Phys. A: Math. Theor. 40(No. 28), 7919–7938 (2007).
 18.
Flores, M. M. & Galapon, E. A. Mixtures of maximally entangled pure states. Annals of Physics 37, 297–308 (2016).
 19.
Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).
 20.
Uchida, G., Bertlmann, R. A. & Hiesmayr, B. C. Entangled entanglement: A construction procedure. Physics Letters A 379, 2698–2703 (2015).
 21.
Huber, M., Mintert, F., Gabriel, A. & Hiesmayr, B. C. Detection of highdimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010).
 22.
Walther, P., Resch, K. J., Brukner, icv & Zeilinger, A. Experimental entangled entanglement. Phys. Rev. Lett. 97, 020501 (2006).
 23.
Huang, Y.F. et al. Experimental generation of an eightphoton greenberger–horne–zeilinger state. Nat Commun 2, 546 (2011).
 24.
Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in threephoton greenbergerhornezeilinger entanglement. Nature 403, 515–519 (2000).
 25.
Leibfried, D. et al. Toward heisenberglimited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).
 26.
Brattke, S., Varcoe, B. T. H. & Walther, H. Generation of photon number states on demand via cavity quantum electrodynamics. Phys. Rev. Lett. 86, 3534–3537 (2001).
 27.
Marrucci, L., Manzo, C. & Paparo, D. Optical spintoorbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
 28.
Piccirillo, B., D’ Ambrosio, V., Slussarenko, S., Marrucci, L. & Santamato, E. Photon spintoorbital angular momentum conversion via an electrically tunable qplate. Applied Physics Letters 97, – (2010).
 29.
D’Ambrosio et al. Arbitrary, direct and deterministic manipulation of vector beams via electricallytuned qplates. Scientific Reports 5, 7840 (2015).
 30.
Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Physical review letters 103, 013601 (2009).
 31.
D’Ambrosio, V. et al. Deterministic qubit transfer between orbital and spin angular momentum of single photons. Opt. Lett. 37, 172–174 (2012).
 32.
Altepeter, J. B., Jeffrey, E. R. & Kwiat, P. G. Photonic state tomography. Advances in Atomic, Molecular, and Optical Physics 52, 105–159 (2005).
 33.
Bancal, J. D. On the DeviceIndependent Approach to Quantum Physics: Advances in Quantum Nonlocality and Multipartite Entanglement Detection. Springer International Publishing 73–80 (2014).
 34.
Schauer, S., Huber, M. & Hiesmayr, B. C. Experimentally feasible security check for nqubit quantum secret sharing. Phys. Rev. A 82, 062311 (2010).
 35.
Jozsa, R. & Linden, N. On the role of entanglement in quantumcomputational speedup. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 459, 2011–2032 (2003).
 36.
Bruß, D. & Macchiavello, C. Multipartite entanglement in quantum algorithms. Phys. Rev. A 83, 052313 (2011).
 37.
Gabriel, A., Huber, M. & Hiesmayr, B. C. Criterion for kseparability in mixed multipartite systems. Quantum Information and Computation (QIC) 10(No. 9 & 10), 829–836 (2010).
Acknowledgements
We thank L. Marrucci and B. Piccirillo for providing qplates and for useful discussions. G.C. thanks Becas Chile and Conicyt for a doctoral fellowship. This work was supported by PRIN (Programmi di ricerca di rilevante interesse nazionale) project AQUASIM and ERCStarting Grant 3DQUEST (3DQuantum Integrated Optical Simulation; Grant Agreement No. 307783): www.3dquest.eu. B.C.H. acknowledges support from the Austrian Science Fund (FWF 23627).
Author information
Affiliations
Contributions
G.C. F.G. V.D. and F.S. performed the experiment; F.G. G.C. V.D. and B.C. H. developed the theoretical tools; all the authors discussed the results and contributed to the writing of the manuscript.
Competing Interests
The authors declare that they have no competing interests.
Corresponding author
Correspondence to Fabio Sciarrino.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Received
Accepted
Published
DOI
Further reading

Optimal estimation of entanglement and discord in twoqubit states
Scientific Reports (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.