Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic moment evolution and spin freezing in doped BaFe2As2


Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe2As2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe2As2, and the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.


Soon after the discovery of high temperature superconductivity in Fe pnictides1, antiferromagnetic ordering in the form of a spin-density wave has been observed in the parent compounds2, 3. The nature of this antiferromagnetism has been highly debated, as demonstrated by the use of antipodal theoretical descriptions, namely, the itinerant and the localized one2,3,4,5,6,7. In the former, magnetism arises from Fermi surface nesting in a similar way to metallic Cr8, where this phenomenon leads to spin-density wave ordering caused by a diverging susceptibility at the nesting wavevector. In Fe pnictides, the discovery, by means of angle resolved photoemission spectroscopy, of cylindrical hole and electron pockets satisfying these nesting conditions supported such a picture, together with the metallic ground state, and apparently low electronic correlations2, 3, 9,10,11. However, this weak-coupling scenario could not explain some characteristic properties of Fe pnictides, such as the presence of magnetic moments (μ) at high temperature, outside the antiferromagnetic phase, and the persistence of spin excitations in non-magnetically ordered phases6, 12,13,14,15,16,17,18,19,20. These two aspects are more consistently explained in a strong-coupling picture, where strong electronic correlations localize the spins as in Mott-Hubbard-like scenarios21,22,23. However, the metallicity and low μ of Fe pnictides conflict with such an extreme strong coupling description.

A formalism which can handle both the itinerant and localized nature of electrons is the dynamical mean field theory (DMFT)24. Thanks to fairly recent methodological advances25, 26, this formalism can efficiently handle the strongly-correlated metal regime of multi-orbital Hubbard models, such as those relevant for the description of Fe pnictides. An important theoretical prediction from DMFT studies27,28,29,30 is the phenomenon of spin-freezing (SF). In systems with strong Hund’s-coupling, long-lived magnetic moments appear in the metal phase, if the filling and interaction strength place the system in the vicinity of the half-filled Mott insulator. The magnetic moment has been measured in BaFe2As2 2, 3, 5, 6, 15, but scant spectroscopic information is available on the temperature and doping effects on μ. Moreover, the electron itinerancy, i.e. the dynamics of the electrons, leads to quantum fluctuations, which by time-averaging mask the value of μ observed by slow probes (i.e. neutron diffraction, NMR, and muon relaxation measurements7, 20, 31,32,33,34,35,36,37,38,39,40,41,42), making it difficult to extract the “bare” value of μ. Fast spectroscopies, probing at the timescale of the electron dynamics (on the order of femtoseconds), are therefore essential to obtain snapshots of the value of μ. This is achieved by the use of techniques such as photoelectron, X-ray absorption, and X-Ray emission spectroscopy14,15,16,17,18,19,20, 43, which indeed produce higher values of μ compared to their slower counterparts. Additionally, as explained in refs 17, 44, it is possible to distinguish different aspects of μ, the bare μ (μ bare S i 〉) connected to quantum fluctuations and the correlated μ \(({\mu }_{corr}\propto \sqrt{\langle {S}_{i}\cdot {S}_{i+1}\rangle })\), which is indicative of dressed quasiparticles (spin excitations). These physical entities represent different aspects of magnetism, have different characteristic time and energy scales, and are probed by different experimental techniques20. μ bare is detected by local probes such as photoelectron, X-ray absorption, and X-Ray emission spectroscopy14, 15, 19, 20, 45,46,47, whereas μ corr is measured by employing inelastic spectroscopies, such as inelastic neutron scattering6, 48, 49 and resonant inelastic X-ray scattering12, 13, 50, 51.

In this paper, we present Fe-K β X-ray emission spectroscopy (XES) measurements of μ bare in electron- (BaFe2−x Co x As2) and hole-doped (Ba1−x K x Fe2As2) Fe pnictides. As outlined in Fig. 1(a) by the stars, our study covers a large range of the phase diagram, from underdoped to overdoped for both electron and hole doping. As we will show, at 15 K, in hole-doped compounds, μ bare exhibits a weak doping dependence, keeping a value around 1.3 μ B , typical of the parent compound whereas in electron-doped BaFe2As2, a decrease is observed, with μ bare being gradually quenched to 1.1 μ B (or 85% of the values of the parent) for the most overdoped sample. While increasing the temperature to 300 K enhances μ bare in all samples, this effect is more pronounced in hole-doped samples than in electron-doped ones. This shows the inadequacy of a fully itinerant approach to explain the formation of local moments and underlines the importance of Hund’s-coupling and electronic correlations in Fe pnictides.

A much more consistent explanation of the doping and temperature evolution of μ bare can be given, with the aid of DMFT calculations, in terms of SF. In BaFe2As2, the nominal d 6 occupation and intermediate strength of the electronic correlations imply that the undoped compound is close to the SF crossover regime30. Upon hole doping, as the d-filling approaches n d  = 5 (half-filling), the effect of the Hund’s-coupling increases, frozen moments appear, and the resulting scattering leads to short quasi-particle life-times and an ill-defined bandstructure. Electron doping, on the other hand, results in a more conventional Fermi-liquid metal, with a well-defined bandstructure and Fermi surface. The electronic screening of μ, by a multi-channel Kondo effect52, leads to an unusual temperature dependence: μ increases with increasing temperature due to a weaker screening effect. Frozen moments with very low Kondo screening temperature appear in the strongly hole-doped region, while electron doping nudges the system towards a more conventional Fermi liquid state with a reduced μ. In the spin-freezing crossover regime, the Kondo screening temperature varies strongly with doping and we hence expect a large temperature variation of the local moment.

Figure 1

(a) Phase diagram of Ba1−x K x Fe2As2 and Ba1−x K x Fe2As2. The red stars depict the doping levels measured. (b) Sketch of the XES process. (c) Exemplary Fe-K β XES for FeCrAs and BaFe2As2 at 15 K. The former is taken as a reference and the difference spectrum is obtained (see main text) and depicted as gray shadowed curve.

Results and Discussions

XES has been established as an extremely sensitive technique in the detection of μ bare 14,15,16, 43, 45,46,47, 51, 53,54,55. In this spectroscopy a core-electron from the Fe 1s core-shell is excited into the continuum by a photon (in our case  = 7.140 keV), the core-hole is then filled up by a Fe 3 p electron together with the emission of a photon ( = 7.040–7.065 keV), as shown by the scheme in Fig. 1(b). The final state, being Fe 3 p 5, has a wavefunction partly overlapping with the Fe 3 d orbitals, which is consequently affected by the spin polarization of the valence band56, 57. This gives rise to a main emission line (composed of K β1 and K β3) and a satellite peak (K β) as shown in Fig. 1(b). The relative intensity of these peaks directly depends on the Fe 3 d net spin14,15,16, 43, 45,46,47, 51, 53,54,55, and employing a calibration procedure, a quantitative determination of μ bare is possible. This method probes the fs timescale20 allowing the measurement of μ bare S i 〉 and minimizing the problem of electron dynamics decreasing the measured value of the moment. By probing the femtosecond fluctuations of the magnetic moment, this technique gives access to the ultrafast dynamics of the local magnetism. However, it is important to differentiate it from time resolved and pump-probe experiments, which can tune and control the probed time scale.

In Fig. 1(c), we show XES spectra obtained from FeCrAs and BaFe2As2. The former is employed as a standard material due to μ bare = 0 on the Fe sublattice, together with a similar Fe coordination to the samples investigated58, 59. BaFe2As2 has been employed as the high μ bare standard, setting it to a value of 1.3 μ B taken from ref. 15. To determine μ bare, we employed the integrated absolute difference (IAD) method described in ref. 54. The areas of the spectra are normalized and the difference to the reference spectrum of FeCrAs is calculated. The integration of this difference gives the IAD, which is proportional to μ bare. To calibrate the absolute energy, we aligned in an additional step all the spectra to the centre of mass as described in ref. 60. We show the difference between the parent and reference compound as the shadowed part of Fig. 1(c). From the integration of this difference spectrum we obtain the IAD.

Having calibrated the instrumental response of IAD vs. μ bare, we now quantify μ bare in the doped compounds of BaFe2As2. In Fig. 2(a), we present the evolution of the XES for hole-doped Ba1−x K x Fe2As2 samples with x = 0.25, 0.4, and 0.6 at 15 K. All spectra look very similar with almost no modification detectable. Consequently, the difference spectra shown in the bottom panels of Fig. 2(a) display little change of μ bare with hole doping. Moving to the XES spectra of electron-doped Ba1−x K x Fe2As2 (x = 0.085, 0.12, and 0.2) depicted in Fig. 2(b), we observe similar spectral features compared to hole-doped BaFe2As2. However, the IAD analysis shows here a decrease of μ bare from 1.3 ± 0.15 μ B to 1.1 ± 0.15 μ B with Co doping.

Figure 2

K β XES for Ba1−x K x Fe2As2 (a) with x = 0.25, 0.4, and 0.6 and Ba1−x K x Fe2As2 (b) with x = 0.085, 0.12, and 0.2 at 15 K. The last row is indicating the relative difference spectra for Ba1−x K x Fe2As2 and Ba1−x K x Fe2As2.

We collected additional XES spectra at 300 K and plot them in Fig. 3(a) for Ba1−x K x Fe2As2 (with x = 0.25, 0.4, and 0.6) and in Fig. 3(b) for Ba1−x K x Fe2As2 (with x = 0.085, 0.12, and 0.2). The spectral shape is basically invariant with temperature, but the XES measurements at 300 K exhibit an increase of IAD and consequently an increase of μ bare in all samples compared to the respective values at 15 K (Figs 3 and 4(a)).

Figure 3

K β XES at 300 K for Ba1−x K x Fe2As2 (a) with x = 0.25, 0.4, and 0.6 and Ba1−x K x Fe2As2 (b) with x = 0.085, 012, and 0.2 at 300 K. The last row is indicating the relative difference spectra for Ba1−x K x Fe2As2 and Ba1−x K x Fe2As2.

Figure 4

(a) Evolution of μ bare and relative IAD for Ba1−x K x Fe2As2 and Ba1−x K x Fe2As2. The blue dots with error bars indicate measurements at 15 K, while the black dots with error bars represents μ bare at 300 K. The dashed coloured lines are values for μ obtained from the DMFT calculations. The relative IAD scale is set to unity for BaFe2As2 at 15 K. (b) Distribution of |S z | values (in units of 1/2) in the thermal ensemble for n = 5.7 (top) and n = 6.1 (bottom) at 15 and 300 K. (c) Sketch of the theoretical phase diagram for Ba1−x K x Fe2As2 and Ba1−x K x Fe2As2 displaying the spin-frozen and Fermi liquid regimes and their evolution with doping and temperature.

These measurements are summarized in Fig. 4(a), where we plot the extracted μ bare for all dopings at both temperatures. Additionally to μ bare, we show in Fig. 4(a) on the right-hand side a relative scale of the IAD. In this scale, the IAD of the BaFe2As2 at 15 K is set to one and the relative change is displayed for all the other compounds. At 15 K, μ bare remains approximately 1.3 μ B in the hole-doped compounds and gradually decreases with doping in electron-doped compounds. This variation is remarkable considering the smaller number of electrons doped by Co-doping compared to the holes injected by K-doping as displayed in the bottom scale of Fig. 4(a). At 0.3 doped holes per Fe no change is observed, whereas doping of just 0.1 electrons per Fe induces a 15% decrease of μ bare. All the samples display an increase of μ bare with temperature, however this increase is surprisingly stronger on the hole-doped samples than in electron-doped ones as shown in Fig. 4(a).

We can partially explain our observations at low temperature by initially considering the fully itinerant limit, where the nesting strength and μ are connected, and can be quantified by the Lindhard function, which has been observed to evolve asymmetrically upon doping61. The nesting strength decreases linearly with the injection of electrons, but remains constant up to x = 0.4 for hole doping where it starts to decrease for even larger doping61. This could account for the decrease of μ bare upon electron doping and partially explain the almost constant μ bare for weak hole doping, but it clearly fails at higher hole doping concentrations.

Moreover, the lack of magnetic ordering, and the observation of a paramagnetic state with an increased μ bare at 300 K, demonstrates that a Fermi surface nesting scenario completely fails to describe the evolution of μ at high temperature. Theoretical work suggested the importance of the Hund’s coupling interaction and the need to combine local and itinerant physics to explain the magnetism of Fe pnictides62,63,64. The effect of doping has also been studied from both a theoretical and experimental standpoint, with the conclusion that doping does not only affect the carrier density and the chemical potential but also that the disorder induced by doping has to be taken into account, which can in principle account for the enhanced scattering rate upon doping65, 66.

Neutron scattering measurements of μ corr show a good agreement with our findings on electron-doped samples49, but a decrease is observed on hole-doped samples48. A difference in the evolution of magnetism upon hole doping has also been reported in INS and RIXS measurements of the spin excitations in Ba1−x K x Fe2As2 12, 48. Both techniques detected consistently a decrease of the bandwidth of the spin excitations, but different results are observed in the intensity. INS detected a decrease of total intensity48, whereas RIXS experiments showed a constancy in the intensity of the spin excitations12. This dichotomy may arise from the different region of the BZ zone probed by the two techniques6, with INS having high sensitivity close to the antiferromagnetic ordering vector and RIXS measuring close to the Γ point. Generally this considerations make our data in agreement with RIXS experiments close to the Γ point.

When compared with our XES measurements, it is important to remember that μ bare from XES, μ corr probed by INS, and the spectral weight in RIXS have different correlation lengths. Our XES measurements probe the magnetic moment localized on a single Fe atom, whereas INS and RIXS can integrate along the momentum and energy domain obtaining μ corr which is sensitive to to collective magnetic excitations. Thus in summary, they probe different aspects of the magnetism.

To aid the interpretation of the experimental measurements, we performed DMFT simulations of a five-orbital Hubbard model with a semi-circular density of states (DOS) of bandwidth 4 eV, which corresponds to the d-electron bandwidth of Ba1−x K x Fe2As2 in the local density approximation30. The Coulomb interaction matrix was taken from ref. 30, but re-scaled in such a way that the SF crossover in the model with the simplified DOS occurs near d-electron filling n d  = 6 at temperature T = 100 K. (The fluctuating local moments at the border of the spin-frozen regime lead to a characteristic \(\sqrt{\omega }\) frequency dependence of the self-energy27, which can be used to identify this crossover regime.) We solved the DMFT equations using the hybridization-expansion approach25, restricting the solution to paramagnetic metal states. The hybridization-expansion method gives direct access to the fluctuating Fe-3d states, and allows to calculate the instantaneous μ (here estimated as \(\mu \approx \sqrt{\langle {S}_{z}\cdot {S}_{z}\rangle }\)) in the relevant temperature and doping regime.

The calculations yield magnetic moments between 1.25 and 1.65 μ B , in good agreement with the experimental results. We show the simulation results for temperatures T = 15 K and 300 K as dashed lines in Fig. 4(a). They display an increase of μ with hole doping and a decrease with electron doping in qualitatively good agreement with the experiments. The doping evolution can be ascribed to a change in the Fe-3 d filling, which affects the distribution of atomic states in the thermal ensemble. In particular, electron doping (hole doping) moves the system further away from (closer to) filling n d  = 5, which is needed to realize the maximum spin state in a localized picture. (In the experiments, the formal occupation is 3 d 6.1 and 3 d 5.7 at the highest dopings.) Most interestingly, our calculations also predict an increase of μ with increasing temperature, an effect which is particularly pronounced on the hole-doped side. Within the SF picture, this arises from a weaker Kondo screening of the local moments at high temperature. In this context, future experimental studies at intermediate temperatures might elucidate whether the magnetic moment increases continuously or if some discontinuous temperature development occurs. It is also instructive to look at the distribution of |S z | values in the thermal ensemble, which is plotted in panel (b) of Fig. 4. Especially on the hole-doped side, these histograms provide clear evidence for a weight shift towards high-spin states and reduced spin fluctuations at the higher temperature.

By correctly reproducing the experimentally observed stronger increase of μ bare with temperature in hole-doped samples, our DMFT calculations confirm that this behaviour is a signature of a crossover into a spin-frozen state. Figure 3(c) illustrates the consequences of the SF crossover on the nature of the metallic phase together with the respective position of the measured samples in the phase diagram (black stars). Hole doping shifts the Fe configuration towards half-filling, and the strong scattering from frozen moments wipes out the bandstructure and invalidates Fermi surface nesting arguments. On the other hand, electron doping leads the system away from the SF crossover region into a more conventional correlated metal regime, indicated by the blue region, where Fermi surface nesting arguments are applicable. This picture is consistent with recent optical measurements showing a non-Fermi liquid response for hole-doped BaFe2As2 and Fermi liquid behaviour for electron-doped BaFe2As2 67.

The difference in slopes observed between calculations and experiments in the electron-doped region and at low temperature may be explained as a consequence of competition between the Fermi surface nesting and the SF. As it is clear from Fig. 4(c), this is the only region of the explored phase diagram where there is a Fermi liquid phase. This suggests that Fermi surface nesting prevails over SF, so that the decrease of μ bare arises mainly from a worsened nesting. This effect is not captured by DMFT calculations with a semi-circular DOS and is difficult to implement in such a theoretical framework. In this case a theoretical framework accounting for the detailed band structure of the system should be used instead of a simplified semi-circular DOS. The situation is opposite on the hole-doped side where Hund’s-coupling and SF effects dominate nesting and μ bare is more strongly affected by local physics. Despite the difficulty of our model to simulate the low temperature electron-doped region, it is remarkable that such a model based on few parameters can cover the evolution of the magnetic moment in a wide portion of the phase diagram as a function of both doping and temperature.

Another consideration concerns the c lattice parameter, which has been connected to the magnitude of the magnetic moment6, 68. Specifically, the c lattice parameter has been observed to shrink in Co-doped samples and to increase in K-doped samples69, 70, implying an increase of hopping with Co doping leading to a Fermi liquid phase, and a decrease of hopping in the K-doped phase driving the system into a more correlated phase, i.e. the SF region. This connection between c lattice parameter and electronic correlations is in agreement with our interpretation of the evolution of μ bare within the phase diagram, since the interaction effects are increased in hole-doped samples and decreased on the electron-doped side of the phase diagram (especially at low temperature).


In summary, we have measured μ bare in hole- and electron-doped BaFe2As2 across the phase diagram. At 15 K, we found μ bare to be weakly dependent on hole doping, but to clearly decrease upon electron doping, in agreement with a crossover between a SF phase and a correlated metal phase with well-defined Fermi surface. Our work demonstrates the importance of Hund’s coupling in the description of Fe pnictides. The asymmetrical increase of μ bare at 300 K results from a competition between electronic screening and Hund’s-coupling induced local moment formation. The qualitative agreement between the doping and temperature dependence observed in both theory and experiment indicates that a SF occurs in hole-doped BaFe2As2, and that both Hund’s-coupling and nesting effects are essential for understanding the unconventional metal state of Fe pnictides.


Single crystals of BaFe2As2, Ba1−x K x Fe2As2, and Ba1−x K x Fe2As2 have been grown by the flux method as described in refs 71, 72. We performed XES experiments at BL11XU of SPring-8, Hyogo, Japan. The incoming beam was monochromatized by a Si(111) double-crystal and a Si(400) secondary channel-cut crystal. The energy was calibrated by measuring X-ray absorption of an Fe foil and set to 7.140 keV with π polarization. We employed three spherical diced Ge(620) analyzers and a detector in Rowland geometry at ca 2 m distance. The total combined resolution was about 400 meV estimated from FWHM of the elastic line. We scanned the absolute emission energy between 7.02 keV and 7.08 keV and normalized the intensity by the incident flux monitored by an ionization chamber. We carried out measurements at both 15 and 300 K.


  1. 1.

    Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-Based Layered Superconductor La[O 1−x F x ]FeAs (x=0.05–0.12) with T c =26K. Journal of the American Chemical Society 130, 3296–3297, doi:10.1021/ja800073m (2008).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Stewart, G. R. Superconductivity in iron compounds. Reviews of Modern Physics 83, 1589–1652, doi:10.1103/RevModPhys.83.1589 (2011).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Advances in Physics 59, 803–1061, doi:10.1080/00018732.2010.513480 (2010).

  4. 4.

    Chubukov, A. V. Itinerant electron scenario for Fe-based superconductors (2015).

  5. 5.

    Iron-Based Superconductivity, vol. 211 of Springer Series in Materials Science (Cham, doi:10.1007/978-3-319-11254-1 (2005).

  6. 6.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Reviews of Modern Physics 87, 855–896, doi:10.1103/RevModPhys.87.855 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. 7.

    Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nature Physics 8, 709–718, (2012).

  8. 8.

    Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Reviews of Modern Physics 60, 209–283, doi:10.1103/RevModPhys.60.209 (1988).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Richard, P., Sato, T., Nakayama, K., Takahashi, T. & Ding, H. Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective. Reports on Progress in Physics 74, 124512, (2011).

  10. 10.

    Mazin, I. I. Superconductivity gets an iron boost. Nature 464, 183–186, (2010).

  11. 11.

    Graser, S., Maier, T. A., Hirschfeld, P. J. & Scalapino, D. J. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New Journal of Physics 11, 025016, (2009).

  12. 12.

    Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nature Communications 4, 1470, (2013).

  13. 13.

    Pelliciari, J. et al. Intralayer doping effects on the high-energy magnetic correlations in NaFeAs. Physical Review B 93, 134515, doi:10.1103/PhysRevB.93.134515 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Gretarsson, H. et al. Spin-State Transition in the Fe Pnictides. Physical Review Letters 110, 047003, doi:10.1103/PhysRevLett.110.047003 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  15. 15.

    Gretarsson, H. et al. Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy. Physical Review B 84, 100509, doi:10.1103/PhysRevB.84.100509 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Simonelli, L. et al. Coexistence of different electronic phases in the K0.8Fe1.6Se2 superconductor: A bulk-sensitive hard x-ray spectroscopy study. Physical Review B 85, 224510, doi:10.1103/PhysRevB.85.224510 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Vilmercati, P. et al. Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO1−x F x and Sr(Fe1−x Co x )2As2. Physical Review B 85, 220503, doi:10.1103/PhysRevB.85.220503 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Bondino, F. et al. Electronic structure of CeFeAsO1−x F x (x=0, 0.11, and 0.12). Physical Review B 82, 014529, doi:10.1103/PhysRevB.82.014529 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Bondino, F. et al. Evidence for Strong Itinerant Spin Fluctuations in the Normal State of CeFeAsO0.89F0.11 Iron-Oxypnictide Superconductors. Physical Review Letters 101, 267001, doi:10.1103/PhysRevLett.101.267001 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mannella, N. The magnetic moment enigma in Fe-based high temperature superconductors. Journal of Physics: Condensed Matter 26, 473202, (2014).

  21. 21.

    Yu, R. & Si, Q. Mott transition in multiorbital models for iron pnictides. Physical Review B 84, 235115, doi:10.1103/PhysRevB.84.235115 (2011).

    ADS  Article  Google Scholar 

  22. 22.

    Si, Q. & Abrahams, E. Strong Correlations and Magnetic Frustration in the High T c Iron Pnictides. Physical Review Letters 101, 076401, doi:10.1103/PhysRevLett.101.076401 (2008).

    ADS  Article  PubMed  Google Scholar 

  23. 23.

    Si, Q., Abrahams, E., Dai, J. & Zhu, J.-X. Correlation effects in the iron pnictides. New Journal of Physics 11, 045001, (2009).

  24. 24.

    Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125, doi:10.1103/RevModPhys.68.13 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  25. 25.

    Werner, P., Comanac, A., de’ Medici, L., Troyer, M. & Millis, A. J. Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 97, 076405, doi:10.1103/PhysRevLett.97.076405 (2006).

    ADS  Article  PubMed  Google Scholar 

  26. 26.

    Werner, P. & Millis, A. J. Hybridization expansion impurity solver: General formulation and application to kondo lattice and two-orbital models. Phys. Rev. B 74, 155107, doi:10.1103/PhysRevB.74.155107 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    Werner, P., Gull, E., Troyer, M. & Millis, A. J. Spin Freezing Transition and Non-Fermi-Liquid Self-Energy in a Three-Orbital Model. Physical Review Letters 101, 166405, doi:10.1103/PhysRevLett.101.166405 (2008).

    ADS  Article  PubMed  Google Scholar 

  28. 28.

    Ishida, H. & Liebsch, A. Fermi-liquid, non-fermi-liquid, and mott phases in iron pnictides and cuprates. Phys. Rev. B 81, 054513, doi:10.1103/PhysRevB.81.054513 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Haule, K. & Kotliar, G. Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of hund’s rule coupling. New Journal of Physics 11, 025021, (2009).

  30. 30.

    Werner, P. et al. Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2. Nature Physics 8, 331–337, (2012).

  31. 31.

    Su, Y. et al. Antiferromagnetic ordering and structural phase transition in BaFe2As2 with Sn incorporated from the growth flux. Physical Review B 79, 064504, doi:10.1103/PhysRevB.79.064504 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    Kofu, M. et al. Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2. New Journal of Physics 11, 055001, (2009).

  33. 33.

    Kaneko, K. et al. Columnar magnetic structure coupled with orthorhombic distortion in the antiferromagnetic iron arsenide SrFe2As2. Physical Review B 78, 212502, doi:10.1103/PhysRevB.78.212502 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Zhao, J. et al. Spin and lattice structures of single-crystalline SrFe2As2. Physical Review B 78, 140504, doi:10.1103/PhysRevB.78.140504 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Aczel, A. A. et al. Muon-spin-relaxation studies of magnetic order and superfluid density in antiferromagnetic NdFeAsO, BaFe2As2, and superconducting Ba1−x K x Fe2As2. Physical Review B 78, 214503, doi:10.1103/PhysRevB.78.214503 (2008).

    ADS  Article  Google Scholar 

  36. 36.

    Kitagawa, K., Katayama, N., Ohgushi, K., Yoshida, M. & Takigawa, M. Commensurate Itinerant Antiferromagnetism in BaFe2As2: 75As-NMR Studies on a Self-Flux Grown Single Crystal. Journal of the Physical Society of Japan 77, 114709, doi:10.1143/JPSJ.77.114709 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Kitagawa, K., Katayama, N., Ohgushi, K. & Takigawa, M. Antiferromagnetism of SrFe2As2 Studied by Single-Crystal 75As-NMR. Journal of the Physical Society of Japan 78, 063706, doi:10.1143/JPSJ.78.063706 (2009).

    ADS  Article  Google Scholar 

  38. 38.

    Pratt, D. K. et al. Coexistence of Competing Antiferromagnetic and Superconducting Phases in the Underdoped Ba(Fe0.953Co0.047)2As2 Compound Using X-ray and Neutron Scattering Techniques. Physical Review Letters 103, 087001, doi:10.1103/PhysRevLett.103.087001 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  39. 39.

    Laplace, Y., Bobroff, J., Rullier-Albenque, F., Colson, D. & Forget, A. Atomic coexistence of superconductivity and incommensurate magnetic order in the pnictide Ba(Fe1−x Co x )2As2. Physical Review B 80, 140501, doi:10.1103/PhysRevB.80.140501 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Bonville, P., Rullier-Albenque, F., Colson, D. & Forget, A. Incommensurate spin density wave in Co-doped BaFe2As2. EPL (Europhysics Letters) 89, 67008, (2010).

  41. 41.

    Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. Journal of Physics: Condensed Matter 22, 203203, (2010).

  42. 42.

    Huang, Q. et al. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors. Physical Review Letters 101, 257003, doi:10.1103/PhysRevLett.101.257003 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  43. 43.

    Yamamoto, Y. et al. Origin of Pressure-induced Superconducting Phase in K x Fe2−y Se2 studied by Synchrotron X-ray Diffraction and Spectroscopy. Scientific Reports 6, 30946, (2016).

  44. 44.

    Hansmann, P. et al. Dichotomy between Large Local and Small Ordered Magnetic Moments in Iron-Based Superconductors. Physical Review Letters 104, 197002, doi:10.1103/PhysRevLett.104.197002 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  45. 45.

    Simonelli, L. et al. Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide. Physical Review B 90, 214516, doi:10.1103/PhysRevB.90.214516 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Lafuerza, S. et al. Evidences of Mott physics in iron pnictides from x-ray spectroscopy. arXiv:1607.07417 [cond-mat], 1607.07417 (2016).

  47. 47.

    Zhao, K. et al. The collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0.8Sr0.2Fe2As2. arXiv:1702.02398 [cond-mat], 1702.02398 (2017).

  48. 48.

    Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nature Communications 4, (2013).

  49. 49.

    Luo, H. et al. Electron doping evolution of the magnetic excitations in BaFe2−x Ni x As2. Physical Review B 88, 144516, doi:10.1103/PhysRevB.88.144516 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Pelliciari, J. et al. Presence of magnetic excitations in SmFeAsO. Applied Physics Letters 109, 122601, doi:10.1063/1.4962966 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Pelliciari, J. et al. Local and collective magnetism of EuFe2As2. Physical Review B 95, 115152, doi:10.1103/PhysRevB.95.115152 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Yin, Z. P., Haule, K. & Kotliar, G. Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations. Phys. Rev. B 86, 195141, doi:10.1103/PhysRevB.86.195141 (2012).

    ADS  Article  Google Scholar 

  53. 53.

    Bergmann, U. & Glatzel, P. X-ray emission spectroscopy. Photosynthesis Research 102, 255–266, doi:10.1007/s11120-009-9483-6 (2009).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Vankó, G. et al. Probing the 3d spin momentum with x-ray emission spectroscopy: The case of molecular spin transitions. The Journal of Physical Chemistry B 110, 11647–11653, doi:10.1021/jp0615961 (2006).

    Article  PubMed  Google Scholar 

  55. 55.

    Ortenzi, L. et al. Structural Origin of the Anomalous Temperature Dependence of the Local Magnetic Moments in the CaFe2As2 Family of Materials. Physical Review Letters 114, 047001, doi:10.1103/PhysRevLett.114.047001 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  56. 56.

    Peng, G. et al. High-resolution manganese x-ray fluorescence spectroscopy. Oxidation-state and spin-state sensitivity. Journal of the American Chemical Society 116, 2914–2920, doi:10.1021/ja00086a024 (1994).

    CAS  Article  Google Scholar 

  57. 57.

    Glatzel, P., Bergmann, U., de Groot, F. M. F. & Cramer, S. P. Influence of the core hole on K β emission following photoionization or orbital electron capture: A comparison using MnO and 55Fe2O3. Physical Review B 64, 045109, doi:10.1103/PhysRevB.64.045109 (2001).

    ADS  Article  Google Scholar 

  58. 58.

    Wu, W. et al. A novel non–Fermi-liquid state in the iron-pnictide FeCrAs. EPL (Europhysics Letters) 85, 17009. (2009).

  59. 59.

    Ishida, S., Takiguchi, T., Fujii, S. & Asano, S. Magnetic properties and electronic structures of CrMZ (M=Fe, Co, Ni; Z=P, As). Physica B: Condensed Matter 217, 87–96. (1996).

  60. 60.

    Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexe–electronic and structural information. Coordination Chemistry Reviews 249, 65–95, (2005).

  61. 61.

    Neupane, M. et al. Electron-hole asymmetry in the superconductivity of doped BaFe2As2 seen via the rigid chemical-potential shift in photoemission. Physical Review B 83, 094522, doi:10.1103/PhysRevB.83.094522 (2011).

    ADS  Article  Google Scholar 

  62. 62.

    Tam, Y.-T., Yao, D.-X. & Ku, W. Itinerancy-Enhanced Quantum Fluctuation of Magnetic Moments in Iron-Based Superconductors. Physical Review Letters 115, 117001, doi:10.1103/PhysRevLett.115.117001 (2015).

    ADS  Article  PubMed  Google Scholar 

  63. 63.

    Yin, W.-G., Lee, C.-C. & Ku, W. Unified Picture for Magnetic Correlations in Iron-Based Superconductors. Physical Review Letters 105, 107004, doi:10.1103/PhysRevLett.105.107004 (2010).

    ADS  Article  PubMed  Google Scholar 

  64. 64.

    Lv, W., Krüger, F. & Phillips, P. Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides. Physical Review B 82, 045125, doi:10.1103/PhysRevB.82.045125 (2010).

    ADS  Article  Google Scholar 

  65. 65.

    Berlijn, T., Lin, C.-H., Garber, W. & Ku, W. Do Transition-Metal Substitutions Dope Carriers in Iron-Based Superconductors? Physical Review Letters 108, 207003, doi:10.1103/PhysRevLett.108.207003 (2012).

    ADS  Article  PubMed  Google Scholar 

  66. 66.

    Ye, Z. et al. Extraordinary Doping Effects on Quasiparticle Scattering and Bandwidth in Iron-Based Superconductors. Physical Review X. 4, 031041, doi:10.1103/PhysRevX.4.031041 (2014).

    ADS  Article  Google Scholar 

  67. 67.

    Tytarenko, A., Huang, Y., de Visser, A., Johnston, S. & van Heumen, E. Direct observation of a Fermi liquid-like normal state in an iron-pnictide superconductor. Scientific Reports 5, 12421, (2015).

  68. 68.

    Zhang, C. et al. Effect of Pnictogen Height on Spin Waves in Iron Pnictides. Physical Review Letters 112, 217202, doi:10.1103/PhysRevLett.112.217202 (2014).

    ADS  Article  Google Scholar 

  69. 69.

    Ni, N. et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic H c2 in Ba(Fe1−x Co x )2As2 single crystals. Physical Review B 78, 214515, doi:10.1103/PhysRevB.78.214515 (2008).

    ADS  Article  Google Scholar 

  70. 70.

    Avci, S. et al. Phase diagram of Ba1−x K x Fe2As2. Physical Review B 85, 184507, doi:10.1103/PhysRevB.85.184507 (2012).

    ADS  Article  Google Scholar 

  71. 71.

    Wang, X. F. et al. The peculiar physical properties and phase diagram of Ba1−x K x Fe2As2 single crystals. New Journal of Physics 11, 045003, (2009).

  72. 72.

    Zhang, C. et al. Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor. Scientific Reports 1 (2011).

Download references


J.P. and T.S. acknowledge financial support through the Dysenos AG by Kabelwerke Brugg AG Holding, Fachhochschule Nordwestschweiz, and the Paul Scherrer Institut. J. P. acknowledges financial support by the Swiss National Science Foundation Early Postdoc. Mobility fellowship Project No. P2FRP2_171824. The synchrotron radiation experiments were performed at BL11XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals No. 2014A3502 and 2014B3502). We thank Y. Shimizu for the support during the experiments at SPring-8 and D. Casa for fabrication of the Ge(620) analyzers. The DMFT calculations were run on the Brutus cluster at ETH Zürich. This research was partly supported by the NCCR MARVEL, funded by the Swiss National Science Foundation. The works performed at IOP-CAS are supported by NSF & MOST through research projects. The single crystal growth work at Rice is supported by the US DOE, BES under Contract No. DE-SC0012311 (P.D.). Part of the materials work at Rice is also supported by the Robert A. Welch foundation Grant No. C-1893 (P.D.).

Author information




T.S. and P.W. conceived the project, J.P., Y.H., K.I., H.D, and T.S. carried out the experiments, C.Z., P.D., G.F.C., L.X., X.W., and C.J. produced the samples, P.W. carried out the calculations, J.P., K.I., P.W., and T.S. wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Jonathan Pelliciari or Thorsten Schmitt.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, J., Huang, Y., Ishii, K. et al. Magnetic moment evolution and spin freezing in doped BaFe2As2 . Sci Rep 7, 8003 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing