## Abstract

Storing CO_{2} in underground saline aquifers is an important way to reduce CO_{2} emission in atmosphere, where gas/fluid diffusion in clay plays a key role in CO_{2} leakage and migration. Various diffusivities, self-diffusivity, Maxwell–Stefan (M–S) diffusivity and Fick diffusivity, in clay interlayer are investigated by molecular dynamics (MD). Self-diffusivity varies with CO_{2} concentration, and reaches the maximum value at 2 molecules/unit-cell. High fluid concentration leads to clay swelling, thereby increasing self-diffusivity. However, the fractional free volume of clay explains the trend of CO_{2} self-diffusivity, which does not decrease with CO_{2} concentration monotonously but reaches the maximum when CO_{2} concentration reaches 2. Displacement distribution of CO_{2} molecules is analysed to explore the microscopic diffusion mechanism, which is characterised by logarithmic normal distribution. The mean value of such distribution further explains the self-diffusivity dependence on CO_{2} concentration. M–S and Fick diffusivities of CO_{2} are calculated by MD for the first time, both of which increase with increasing CO_{2} and H_{2}O concentration and temperature. Based on self-diffusivity and M–S diffusivity, a quantity representing the coupling strength between CO_{2} molecules is presented; it increases firstly with CO_{2} concentration but begins to decrease when CO_{2} concentration is beyond 2.

## Introduction

Carbon dioxide (CO_{2}) storage in underground saline aquifers is a promising way to reduce CO_{2} emission in the atmosphere. This strategy provides long-term and large-scale storage of CO_{2}. Clay minerals^{1}, such as illite, chlorite, kaolinite and montmorillonite (MMT) play an important role in this process. On the one hand, owing to their porous (layered) structure, the clay minerals have remarkable capacity of adsorbing CO_{2}
^{2,3,4}. They provide a large amount of space for storing CO_{2}
^{5}. On the other hand, clay is almost impermeable, and therefore, the clay-enriched cap rocks show excellent sealing ability to retain injected CO_{2}
^{6,7,8}. Gas leakage and environmental impact are the main problems found after risk assessment of CO_{2} storage. These problems are closely related to fluid (gas) transportation in clay. Gas diffusion in clay is the most important method for gas transportation because of the extremely low permeability of clay.

Many experimental studies have focused on the structure and interaction of CO_{2} and clay mineral^{9,10,11,12}. Loring *et al*. examined that CO_{2} can migrate the interlayer region of MMT based on the *in situ* X-ray diffraction, magic-angle spinning in nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy^{10, 13}. Giesting *et al*. investigated the impact of CO_{2} absorption on Ca-exchanged MMT expansion under different CO_{2} pressures^{14}. In addition, quasi-elastic neutron scattering experiments on hydrated clays have shown that hydrated cation diffusion mobility is probably a complex dynamic process, and the diffusion coefficients of the exchangeable cations were estimated^{15}. Kozaki *et al*. determined the apparent diffusion coefficients of Cs^{+} as functions of the temperature^{16}. Sánchez *et al*. discussed that the self-diffusivity of water depends on the temperature and ionic strength of different kinds of clays^{17}. However, no experiment on diffusivity of CO_{2} in clay was reported.

With the current high-performance computational resources, molecular simulations have become powerful tools for understanding the molecular-scale structural^{18, 19}, thermodynamic^{20}, mechanical^{21} and dynamic^{22,23,24,25} properties of clay. Grand-canonical Monte Carlo (GCMC) method was used to examine the adsorption of CO_{2} with H_{2}O^{23}, CH_{4}
^{26,27,28} and organic molecules^{25, 29} in clay. Yang *et al*. used molecular dynamics (MD) to study the structure and self-diffusion coefficient (SDC) of CO_{2} in uncharged clay-like slit pores^{24}. Cygan *et al*. developed CLAYFF force field^{30} for clay and three-site flexible potential modes of CO_{2}
^{31}. Myshakin *et al*. showed that the intercalation of CO_{2} in clay caused the significant changes in the d-spacing and described that the distribution and diffusion of CO_{2}, H_{2}O and Na^{+} were affected by the number of layers of clay^{32,33,34}. Botan *et al*. found that CO_{2} affects the diffusion of mobile species in clays^{23}.

All the above-mentioned MD simulations mainly investigated the SDCs. Two important diffusion coefficients that are closely related to gas transportation, namely, Maxwell–Stefan diffusion coefficient (MDC) and Fick diffusion coefficient (FDC), have not been investigated. In fact, FDC, instead of SDC, is usually experimentally measurable and is used as parameter input in macroscopic gas transportation formulation, which predicts transportation of underground injected CO_{2}. In this work, a series of MD simulations are performed to explore various diffusion coefficients of CO_{2} in clay. The effects of gas concentration, water concentration and temperature on SDC, MDC and FDC are discussed in detail.

## Methods

### Theory of diffusion

As stated above, diffusion coefficients mainly have three types, SDC, FDC and MDC, which are useful in characterising molecular transport and mobility within porous materials. Self-diffusion means random motions or mixing of particles in the thermodynamic equilibrium. In MD simulation, SDC, *D*
_{
iself
}, of component *i* is computed by Einstein equation^{35}:

where *n*
_{
i
} is the number of the molecules of component *i*, *d* is the dimension of the system and *r*
_{
l
},_{
i
}(*t*) is the position vector of molecule *l* at time *t*.

FDC is the particle motions driven by chemical or concentration gradient, resulting in the net mass transport. Fick’s law of diffusion defines the transport diffusivity, *D*
_{
iFick
}, as the proportionality factor between the flux *N* and the concentration gradient:

Chemical potential gradient is considered as the fundamental driving forces for diffusion^{36,37,38,39,40}. For single-component diffusion in porous material, the transport equation can be expressed as follows:

where *μ*
_{
i
} is the chemical potential of gas *i*. Moreover, *L* is obtained from the MD simulations using^{41} the following:

where *V* is the clay volume, *k*
_{
B
} is the Boltzmann constant and *T* is the temperature. The content in <…> represents an average on the cross-displacement correlation function (CDCF). The notation < > represents an average on a number of independent runs of same ensembles starting from different initial conditioins.

The Maxwell–Stefan (M–S) theory of diffusion was already available from Maxwell^{42} and Stefan^{43}, in which gas diffusion is driven by chemical gradient. Using the M–S theory, the following expression can be derived for diffusion of the single component in a nanoporous material:

where *ρ* is the clay density expressed as the number of unit cells per cubic meter, Θ_{
i,sat
} is the saturation loading of the component *i*, *μ*
_{
i
} is the chemical potential expressed in joules per molecule and *N*
_{
i
} is the molar flux of the component *i* expressed in molecules per square meter per second. The fractional occupancy *θ*
_{
i
} are defined as follows:

where Θ_{
i
} is the loading of the component *i*. Combining equation (3) and equation (5), the MDC, *D*
_{
iM-S
}, is calculated by the following:

Under isothermal condition, the molecules are considered to move with average velocity subject to a driving force ∇*μ*
_{
j
},*μ* = *μ*
_{0} + *k*
_{
B
}
*T* ln *f*, where *f* is the fugacity and ∇*μ* = *k*
_{
B
}
*T* ∇*f*/*f*. Thus, equation (2) is equivalent to equation (3).

The FDC and MDC are related by

where Γ is the thermodynamic factor

### MD simulation details

The sodium-saturated Wyoming-type MMT is used as the clay crystal model with unit formula Na_{0.75}[Si_{8}](Al_{3.25}Mg_{0.75})O_{20}(OH)_{4}
^{44}, which comprises 2:1 or tetrahedral−octahedral−tetrahedral layers. The substitution of octahedral Al^{3+} by Mg^{2+} and tetrahedral Si^{4+} by Al^{3+} leads to net negative layer charge. The interlayer Na^{+} cations are balanced by these negative changes. Three-dimensional periodic boundary condition is applied to a simulation box comprising 32 (8 × 4 × 1) united cells. Clay model with different number of CO_{2} and H_{2}O are allowed to freely swell to their equilibrium d-spacing. All simulated systems are listed in Table 1. Cn (n = 1, 2,…) denotes the system in which the number of H_{2}O is fixed, and the number of CO_{2} is represented by n. Hn (n = 1, 3,…) represent systems with different numbers of H_{2}O. Tn (n = 1, 3,…) represents systems with varying temperature.

In this article, all simulations are performed with the Accelrys Materials Studio software.The CLAFF force field^{30, 31}(Cygan, Liang *et al*. 2004, Cygan, Romanov *et al*. 2012) is used^{30,31,32}. The Ewald summation method is applied for the electrostatic interactions. The atom-based summation method is used in the van der Waals interactions with a cut-off of 12.5 Å. Gas diffusions are simulated as follows: Gases are firstly inserted into the above equilibrium configuration by GCMC method to get a new clay-gas cell. The cell is minimised and equilibrated by NPT and NVT. Then, the cell is run in a NVT ensemble (0.5 ns) followed by a long-time (5 ns) NVE run. The trajectories in the NVE run are saved for diffusion coefficient computation. Integration time step is set to 1 fs. Since diffusion coefficients are based on statistics of numerous molecule trajectories, all the diffusivities in this article are computed by averaging on more than 10 indenpent MD runs to get reliable results.Gas concentration, water component and temperature are used to investigate their impacts on gas diffusions.

## Results and Discussion

MD simulation can be used to obtain not only gas diffusion coefficients but also the microscopic details of the diffusion process, which is helpful to understand underlying diffusion mechanism in a confined space. Figure 1 depicts a simulation snapshot of the diffusion of CO_{2} and H_{2}O in MMT clay, from which it is seen that fluid molecules are uniformly distributed in the interlayer of MMT. The direction perpendicular to the walls of interlay is defined as z-axis and the mutually orthogonal x- and y-axes form a plane parallel to the walls. The short length along the z-axis greatly hinders the diffusion of gases along this direction. Thus, only the diffusion behaviour of fluids along the x–y plane is investigated in this study. Unless stated otherwise, the diffusion coefficients in this work refer to the diffusion in the x–y plane.

### Self-diffusion coefficients and its Variation with CO_{2} concentration

Diffusion coefficients are calculated based on the statistical average of the motion of large amounts of particles, and their accuracy relies on the sample size. For the sake of accuracy, each system is run 10 times independently. The resulting MSDs are averaged to calculate SDC. Diffusion coefficients are related to many factors including type and concentration of the gas, size of the pores, temperature and so on. Injection pressure of CO_{2}, moisture content and underground temperature are key factors in the geological storage of CO_{2}. Therefore, this study focuses on the impacts of CO_{2} concentration, water concentration and temperature on CO_{2} diffusion coefficient.

Firstly, the influence of CO_{2} concentration on its SDC is studied. The number of water molecules is set to 5 molecules per unit cell and the temperature to 313.15 K (approximately the temperature of 1000 meters underground). The Monte Carlo method is used to insert varying amounts of CO_{2} molecules into the system. The system is then relaxed to equilibrium through NPT and NVT run, with resulting interlay distances (d-spacing) shown in Table 1. The equilibrated system is then subjected to dynamic run in NVE ensemble to compute SDC, as shown in Fig. 2a. With the increase of CO_{2} concentration, the SDCs of CO_{2} and H_{2}O firstly increase and then decrease. At the CO_{2} loading value of 64 (C6 system), the SDCs of both reach maximum values. The SDC of H_{2}O remains higher than that of CO_{2}, which originates from the smaller thermodynamic diameter of H_{2}O (2.65 Å) compared with that of CO_{2} (3.3 Å).

However, many studies had shown that the SDCs of gases in porous media decrease with the increase of their concentrations^{36, 38, 45}, which is different from the aforementioned result in Fig. 2a. To explore the cause of the variation of SDC, we further analyse the effect of CO_{2} on the clay structure. As shown in Table 1, the d-spacing of MMT continues to increase with CO_{2} concentration, which could provide fluids with larger space for diffusion, resulting in larger diffusion coefficient. SDC is expected to increase with CO_{2} concentration monotonously. However, our simulations reveal a higher SDC in high-concentration system C6 compared to the low-concentration system C5. To further explore the cause of this unusual SDC variation, fractional free volume (FFV) of the system is defined as the ratio of interlayer space unoccupied by fluids to the total volume of MMT:

where *V*
_{
free
} is the free volume and *V*
_{
total
} is the total volume of the MMT. The FFV can be directly determined by molecular probes^{46, 47}. As shown in Fig. 3a, the FFV increases with the CO_{2} concentration firstly and peaks at 64 CO_{2} molecules, which is in accordance with the position of maximum of CO_{2} SDC. This finding indicates two counter-interactions, as follows. Firstly, the increase of CO_{2} concentration could cause the expansion of d-spacing in the system and provide fluids with more space for diffusion. Secondly, increasing CO_{2} molecules occupy more space, thereby resulting in the decrease of free volumes. The fluid molecules become more crowded and diffuse more slowly. Therefore, fluid SDC depends on the free space in the interlayer. At the initial stage of CO_{2} injection, the rapid expansion of d-spacing increases the free volume in the interlayer, which is beneficial for fluid diffusion and increases CO_{2} SDCs. The free volume reaches a maximum at 64 CO_{2} molecules. The free volume decreases despite the continued expansion of d-spacings, which hinders gas diffusion and decreases the SDCs of CO_{2} and H_{2}O (Fig. 3a).

### Variation of SDCs with moisture and temperature

Water content varies with the depth of storage aquifer. A MMT system with 2 CO_{2} molecules per unit cell is used to investigate quantitatively the impact of water concentration on the diffusion. Moreover, the temperature is fixed at 313 K. Figure 2b shows the variation of SDCs with H_{2}O concentration, where the SDCs of CO_{2} and H_{2}O increase with H_{2}O concentration. Similarly, the FFVs under different moisture contents can be calculated, as shown in Fig. 3b. The FFV increases with moisture content, showing the same trend as the SDCs. The increase of water molecules increases the free volume in the interlayer and supports the diffusion of fluids.

Temperature is an important factor in the diffusion of gases. As shown in Fig. 2c, increasing temperature can accelerate the thermal motion of molecules and increase their kinetic energy, thereby gradually increasing fluid SDC. Calculations show that the relationship between SDC and temperature follows the classical Arrhenius formula:

where *D*
_{
0
} is a constant, and E_{a} is the activation energy of diffusion. According to the equation, the activation energy for CO_{2} diffusion in MMT is 20.26 kJ/mol (see inset of Fig. 2c), which is greater than its activation energy of diffusion in pure water 17.8904 kJ/mol^{48}. The MMT layers impose restriction on CO_{2} diffusion, causing high activation energy in MMT.

Details such as the paths and displacements of molecules provided by MD simulation can be used to study the microscopic mechanism of gas diffusion. Previous work indicated that the diffusion of gases in porous media (such as polymeric compounds and metal organic frameworks) involves two processes: limited movements within one micropore (small displacements) and jumps among micropores (large displacements)^{37}. Layered MMT provides anisotropic confined space without interconnected micropores. Diffusion of gas in such structure is different from random movements of gas in unlimited environment. We further analyse the displacement distribution of CO_{2} molecules, as shown in Fig. 4. All the distributions are seen to have a single peak, and no peak is shown at large displacements. The displacements generally fall within 0.6–1.0 Å. This finding indicates that no inter-pore jumps occur during gas diffusion. Figure 4 also demonstrates that, as CO_{2} concentration increases, the displacement peak (i.e. the prevailing displacement) moves towards the left and becomes wider, reaching the maximum width in the C5 system. This finding implies increases of both the prevailing displacement and the number of fast-speed molecules. Therefore, with the increase of CO_{2} concentration, SDC of CO_{2} increases and reaches a maximum at C5 system. Similarly, the increase of moisture and temperature increases prevailing displacement and peak width, thereby increasing the SDC (as shown in the Figure above). The displacement distributions can be fitted to logarithmic normal distribution function (LNDF):

Figure 5a shows some examples, in which curves are observed to be well-fitted to the data (R^{2} > 0.98). To quantitatively examine the relationship between the displacement distribution and SDC, the mean value of LNDF:*R*
_{
av
} = \({e}^{(a+{b}^{2}/2)}\), an important characteristic parameter for log-normal distributions, is calculated. The results are shown in Fig. 5b–d. Figure 5b shows the relationship between mean displacement and CO_{2} concentration. In this study, *R*
_{
av
} increases with CO_{2} concentration firstly, reaches a maximum at C5 and then decreases, showing the same trend as the SDC of CO_{2}. The average displacement of molecules in unit time (1 ps) reflects the relative speed of diffusion, and hence, larger *R*
_{
av
} results in faster diffusion speed and a higher SDC. In a word, *R*
_{
av
} is positively related to the SDCs of CO_{2} and H_{2}O. This finding is further validated by systems with varying moisture contents and temperatures. As shown in Fig. 5c,d, *R*
_{
av
} increases with moisture and increases linearly with temperature, causing the increase of SDCs of CO_{2} and H_{2}O (Fig. 2).

### Variation of MDC and FDC with concentration, moisture content and temperature

To calculate MDC, the Onsager coefficient *L* should be determined using equation (4) in advance. The CDCF can thus be computed from the slope of the curve, which is used to calculate MDC from equation (7) and FDC using equation (9). The thermodynamic factor in equation (9) requires the adsorption isotherm of CO_{2}, which can usually be simulated using the GCMC method. The conventional GCMC method assumes a rigid absorbent (μVT ensemble). However, MMT clay swells after adsorbing CO_{2}. Swollen MMT can continue to adsorb more gas. Therefore, the conventional GCMC is not suitable for calculating adsorption isotherms of CO_{2} in MMT. In this study, we adopt a new elastic-adsorption approach to simulate CO_{2} isotherm by considering the swelling of MMT. The MMT structure with the initial 224 water molecules is taken as an example (see Fig. 6). Using the conventional GCMC method, we can obtain significantly different adsorption isotherms at different fixed d-spacing values, i.e. the initial and swollen d-spacing. In these isotherms, the curves rapidly approach to saturation at low pressure, and the amount of CO_{2} adsorption is almost kept constant when the pressure rises above 1 MPa (shown by the black line in Fig. 6), which is inconsistent with experimental results^{49}. However, the CO_{2} adsorption isotherm obtained by the above elastic-adsorption method increases gradually with the CO_{2} pressure, which is more qualitatively coincident with the Langmuir formula and the above-mentioned experiment results. The maximum adsorption *θ*
_{sat} can be obtained by fitting with the Langmuir equation, and then, the thermodynamic factor can be calculated by equation (10). The results show that thermodynamic factor always increases with increasing CO_{2} concentration. For low CO_{2} concentrations, thermodynamic factor is not influenced by H_{2}O apparently, whereas at higher CO_{2} concentrations, the thermodynamic factor gradually decreases with H_{2}O concentration.

The effect of CO_{2} concentration, H_{2}O content and temperature on MDC and FDC is also explored. The red dots in Fig. 7 represent the variation of CO_{2} MDC, which increase with CO_{2} concentration, H_{2}O content and temperature. The black dots in Fig. 7 represent the FDC. The thermodynamic factor is generally high. Thus, the FDC is usually larger than MDC. Similar to MDC, FDC increases with CO_{2} concentration, H_{2}O content and temperature.

The significance differences of CO_{2} diffusivities among CO_{2} concentration moisture content and temperature are calculated as 0.033 (SDC), 0.027 (MDC) and 0.012 (FDC) respectively, indicating the reliablity of the above results.

### Relationship between SDC and MDC: The coupling effect of CO_{2} molecules

Krishna and Paschek *et al*. proved that the difference between MDC and SDC is caused by the self-exchanging coupling between molecules of a diffusing gas^{40}. The strength of the coupling between gas molecules can be represented by the self-exchange coefficient *D*
_{
ii
}, which is calculated by the following formula:

A lower value of *D*
_{
ii
} indicates stronger correlation and vice versa. The results of Krishna *et al*. indicated that *D*
_{
ii
} is significantly influenced by the concentration of the gas: Higher concentration leads to stronger correlation^{40}. Using the aforementioned SDC and MDC results, the impact of CO_{2} concentration on *D*
_{
ii
} is shown in Fig. 8. With increasing CO_{2}, *D*
_{
ii
} firstly increased and then decreased, reaching the maximum at 2 molecules/unit cell. *D*
_{
ii
} increases with increasing CO_{2} molecules, thereby leading to weak correlation among CO_{2} molecules. When the CO_{2} concentration exceeds 2, *D*
_{
ii
} begins to decrease, resulting in stronger correlation. This result is different from the case described in ref. 40, where *D*
_{
ii
} monotonically increased with gas concentration in MOF. The coupling between molecules may have been influenced by two factors. On one hand, the correlation is strengthened by increasing the CO_{2} concentration. On the other hand, the rising concentration causes the MMT to expand, thereby increasing the volume of the layer and weakening the correlation. The final strength of the coupling may depend on the FFV within the MMT.

## Conclusions

In this study, MD is used to study various diffusion coefficients of CO_{2} in MMT clay under varying conditions. With increasing CO_{2} concentration, the SDCs of CO_{2} and H_{2}O display a peak, respectively. Water content and temperature are positively correlated with the SDC. Many previous studies show that SDCs of gases in porous media usually decrease monotonically with the gas concentration. To further explain the unusual results, the FFV within MMT and the displacement distribution of CO_{2} are analysed. FFV has an important effect on the diffusion of gas molecules in MMT. Increasing CO_{2} concentration causes the expansion of MMT, thereby increasing the internal FFV of MMT and providing gas molecules with more space for diffusion. This finding explains the initial increase of the fluid SDC in MMT. FFV begins to decrease when the CO_{2} concentration rises above 2, which hinders the gas diffusion and thereby decreasing SDC. Similarly, the increase of water content also causes the MMT to expand and create more free space for CO_{2} diffusion, leading to increasing CO_{2} SDC. The fluid SDC in MMT depends on the FFV of MMT. Furthermore, the displacement distribution of CO_{2} follows log-normal distribution, and the mean of the distribution shows the same trend as the SDC, which provides a good explanation of the effects of CO_{2} concentration, moisture and temperature on SDC from another perspective.

Most previous works focused on the self-diffusion coefficients of gases in MMT. FDCs are of practical importance for the geological storage of CO_{2}. In this work, the MDC and FDC of CO_{2} in MMT are investigated by MD for the first time, both of which increase with CO_{2} concentration, moisture and temperature. Using the SDC and MDC, we calculate the self-exchange coefficient *D*
_{
ii
}, which represents the coupling effect among CO_{2} gas molecules. This coefficient firstly increases with CO_{2} concentration, reaching a maximum with concentration 2, and then decreases, showing the same trend as FFV. This implies that, with increasing CO_{2} concentration, the FFV increases, thereby weakening the correlation between CO_{2} molecules until the CO_{2} concentration reaches 2. Then, the FFV decreases and the CO_{2} correlation coupling strength begins to increase.

## References

Josh, M.

*et al*. Laboratory Characterisation of Shale Properties.*J Petrol Sci Eng***88–89**, 107–124 (2012).Gasparik, M.

*et al*. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.*Int J Coal Geol***123**, 34–51 (2014).Khosrokhavar, R., Wolf, K. H. & Bruining, H. Sorption of CH

_{4}and CO_{2}on a Carboniferous Shale from Belgium Using a Manometric Set-up.*Int J Coal Geol***128**, 153–161 (2014).Fu, M. H., Zhang, Z. Z. & Low, P. F. Changes in the Properties of a Montmorillonite-Water System during the Adsorption and Desorption of Water: Hysteresis1.

*Clays & Clay Minerals***38**, 485–492 (1990).Wang, J. G., Ju, Y., Gao, F., Peng, Y. & Gao, Y. Effect of CO

_{2}Sorption-Induced Anisotropic Swelling on Caprock Sealing Efficiency.*J Clean Prod***103**, 685–695 (2014).Gaus, I. Role and Impact of CO

_{2}–Rock Interactions during CO_{2}Storage in Sedimentary Rocks.*Int J Greenhouse Gas Control***4**, 73–89 (2010).Gernot, R.

*et al*. CO_{2}Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements.*Environ Sci Technol***47**, 205–211 (2013).Abdou, M. I. & Ahmaed, H. E. Evaluation of Low-solids Mud Reological Behavior during Drilling Shale Formation and Their Effect on the Pay Zone Productivity.

*Petrol Sci Technol***28**, 934–945 (2010).Saiyouri, N., Tessier, D. & Hicher, P. Y. Experimental Study of Swelling in Unsaturated Compacted Clays.

*Clay Miner***39**, 469–479 (2004).Loring, J. S.

*et al*.*In Situ*Study of CO_{2}and H_{2}O Partitioning between Na–Montmorillonite and Variably Wet Supercritical Carbon Dioxide.*Langmuir***30**, 6120–6128 (2014).Schaef, H. T.

*et al*.*In Situ*XRD Study of Ca^{2+}Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide.*Int J Greenhouse Gas Control***6**, 220–229 (2012).Krukowski, E. G.

*et al*. FT-IR Study of CO_{2}Interaction with Na^{+}Exchanged Montmorillonite.*Appl Clay Sci***114**, 61–68 (2015).Loring, J. S.

*et al*.*In Situ*Molecular Spectroscopic Evidence for CO_{2}Intercalation into Montmorillonite in Supercritical Carbon Dioxide.*Langmuir***28**, 7125–7128 (2012).Giesting, P., Guggenheim, S., Groos, A. F. K. V. & Busch, A. X-ray Diffraction Study of K- and Ca-Exchanged Montmorillonites in CO

_{2}Atmospheres.*Environ Sci Technol***46**, 5623–5630 (2012).Sobolev, O.

*et al*. Hydration of Na^{+}, Ni^{2+}, and SM^{3+}in the Interlayer of Hectorite: A Quasielastic Neutron Scattering Study.*J Phys Chem C***113**, 13801–13812 (2009).Kozaki, T., Sato, H., Sato, S. & Ohashi, H. Diffusion Mechanism of Cesium Ions in Compacted Montmorillonite.

*Eng Geol***54**, 223–230 (1999).Sánchez, F. G.

*et al*. Self-Diffusion of Water and its Dependence on Temperature and Ionic Strength in Highly Compacted Montmorillonite, Illite and Kaolinite.*Appl Geochem***23**, 3840–3851 (2008).Teich-Mcgoldrick, S. L., Greathouse, J. A., Jové-Colón, C. F. & Cygan, R. T. Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects.

*J Phys Chem C***119**, 20881–20891 (2015).Lee, M. S., Mcgrail, B. P. & Glezakou, V. A. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO

_{2}.*Environ Sci Technol***48**, 8612–8619 (2014).Boek, E. S., Coveney, P. V. & Skipper, N. T. Monte Carlo Molecular Modeling Studies Of Hydrated Li-, Na-, And K-Smectites: Understanding The Role Of Potassium As A Clay Swelling Inhibitor.

*J.am.chem.soc***117**, 12608–12617 (1995).Zhang, W., Hu, H., Li, X. & Fang, Z. Interplay of Montmorillonite–H

_{2}O–scCO_{2}System between Mechanical Behavior and Adsorption: Molecular Dynamics.*J Phys Chem C***119**, 21959–21968 (2015).Malikova, N., Marry, V., Dufrêche, J. F. & Turq, P. Na/Cs montmorillonite: Temperature Activation of Diffusion by Simulation.

*Curr Opin Colloid In***9**, 124–127 (2004).Botan, A., Rotenberg, B., Marry, V., Turq, P. & Noetinger, B. Carbon Dioxide in Montmorillonite Clay Hydrates: Thermodynamics, Structure, and Transport from Molecular Simulation.

*J Phys Chem C***114**, 14962–14969 (2010).Yang, X. & Zhang, C. Structure and Diffusion Behavior of Dense Carbon Dioxide Fluid in Clay-Like Slit Pores by Molecular Dynamics Simulation.

*Chem Phys Lett***407**, 427–432 (2005).Krishnan, M., Saharay, M. & Kirkpatrick, R. J. Molecular Dynamics Modeling of CO

_{2}and Poly(ethylene glycol) in Montmorillonite: The Structure of Clay–Polymer Composites and the Incorporation of CO_{2}.*J Phys Chem C***117**, 20592–20609 (2013).Yang, N., Liu, S. & Yang, X. Molecular Simulation of Preferential Adsorption of CO

_{2}Over CH_{4}in Na-montmorillonite Clay Material.*Appl Surf Sci***356**, 1262–1271 (2015).Kadoura, A., Narayanan Nair, A. K. & Sun, S. Adsorption of Carbon Dioxide, Methane, and Their Mixture by Montmorillonite in the Presence of Water.

*Micropor Mesopor Mat***225**, 331–341 (2016).Jin, Z. & Firoozabadi, A. Methane and Carbon Dioxide Adsorption in Clay-Like Slit Pores by Monte Carlo Simulations.

*Fluid Phase Equilibr***360**, 456–465 (2013).Yu, C. H., Newton, S. Q., Norman, M. A., Schäfer, L. & Miller, D. M. Molecular Dynamics Simulations of Adsorption of Organic Compounds at the Clay Mineral/Aqueous Solution Interface.

*Struct Chem***14**, 175–185 (2003).Cygan, R. T., Liang, J. J. & Kalinichev, A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field.

*J Phys Chem B***108**, 1255–1266 (2004).Cygan, R. T., Romanov, V. N. & Myshakin, E. M. Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field.

*J Phys Chem C***116**, 13079–13091 (2012).Makaremi, M., Jordan, K. D., Guthrie, G. D. & Myshakin, E. M. Multiphase Monte Carlo and Molecular Dynamics Simulations of Water and CO

_{2}Intercalation in Montmorillonite and Beidellite.*J Phys Chem C***119**(2015).Myshakin, E. M., Makaremi, M., Romanov, V. N., Jordan, K. D. & Guthrie, G. D. Molecular Dynamics Simulations of Turbostratic Dry and Hydrated Montmorillonite with Intercalated Carbon Dioxide.

*J Phys Chem A***118**, 7454–7468 (2014).Myshakin, E. M., Saidi, W. A., Romanov, V. N., Cygan, R. T. & Jordan, K. D. Molecular Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite.

*J Phys Chem C***117**, 11028–11039 (2013).Einstein, A. On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat.

*Annalen der Physik (Leipzig).***17**, 549–560 (1905).Skoulidas, A. I., Sholl, D. S. & Krishna, R. Correlation Effects in Diffusion of CH4/CF4 Mixtures in MFI Zeolite. A Study Linking MD Simulations with the Maxwell–Stefan Formulation.

*Langmuir***19**, 7977–7988 (2003).Krishna, R. & Wesselingh, J. A. The Maxwell-Stefan Approach to Mass Transfer.

*Chem Eng Sci***52**, 861–911 (1997).Krishna, R. & Paschek, D. Verification of the Maxwell-Stefan Theory for Diffusion of Three-Component Mixtures in Zeolites.

*Chem Eng J***87**, 1–9 (2002).Krishna, R. & Jasper, V. B. Diffusion of Alkane Mixtures in Zeolites: Validating the Naxwell-Stefan Formulation Using MD Simulations.

*J Phys Chem B***109**, 6386–6396 (2005).Krishna, R. Diffusion in Porous Crystalline Materials.

*Chem Soc Rev***41**, 3099–3118 (2012).Theodorou, D. N., Snurr, R. Q. & Bell, A. T. Molecular Dynamics and Diffusion in Microporous Materials.

*Comprehensive Supramolecular Chemistry***7**, 507–548 (1996).Maxwell, J. C. On the dynamical theory of gases.

*Proceedings of the Royal Society of London***15**, 167–171 (1867).Stefan, J. uber das Gleichgewich und die Bewegung, insbesondere die Diffusion von Gasmengen.

*Sitzungsber Akad Wiss Wien.***63**, 63–124 (1871).Skipper, N. T., Chang, F. R. C. & Sposito, G. Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. I: Methodology.

*Clay Clay Miner***43**, 285–293 (1995).Skoulidas, A. I. & Sholl, D. S. Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Naterials Assessed Using Molecular Dynamics Simulations.

*J Phys Chem B***109**, 15760–15768 (2005).Connolly, M. L. Solvent-Accessible Surfaces of Proteins and Nucleic Acids.

*Science***221**, 709–713 (1983).Ronova, I. A., Rozhkov, E. M., Alentiev, A. Y. & Yampolskii, Y. P. Occupied and Accessible Volumes in Glassy Polymers and Their Relationship with Gas Permeation Parameters.

*Macromol Thero Simul***12**, 425–439 (2003).Tamimi, A., Rinker, E. B. & Sandall, O. C. Diffusion Coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in Water over the Temperature Range 293–368 K.

*J Chem Eng Data***39**, 330–332 (1994).Busch, A.

*et al*. Carbon Dioxide Storage Potential of Shales.*Int J Greenhouse Gas Control***2**, 297–308 (2008).

## Acknowledgements

We are indebted to the National Key Research and Development Program (2016YFB0600805) and Chinese National Science Foundation (50904061, 41172285).

## Author information

### Authors and Affiliations

### Contributions

H.H. organized the work and prepared the manuscript. Y.X. performed molecular dynamics simulations. X.L. conducted theoretical aspects and analyzed data. All the authors discussed and approved the results and conclusions of this article.

### Corresponding authors

## Ethics declarations

### Competing Interests

The authors declare that they have no competing interests.

## Additional information

**Publisher's note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

## About this article

### Cite this article

Hu, H., Xing, Y. & Li, X. Self-diffusivity, M–S and Fick diffusivity of CO_{2} in Na-clay: The influences of concentration and temperature.
*Sci Rep* **7**, 5403 (2017). https://doi.org/10.1038/s41598-017-05758-3

Received:

Accepted:

Published:

DOI: https://doi.org/10.1038/s41598-017-05758-3

## Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.