Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA repair

Pol X DNA polymerases contribute to NHEJ flexibility

New work on DNA polymerase λ highlights its remarkable flexibility. This fits with the generally adaptable nature of the DNA-repair process in which this enzyme is involved—nonhomologous end-joining—which allows this mechanism to handle diverse types of broken DNA ends in order to restore the duplex structure, albeit with a loss of information at the join.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Choice of pathway for double-strand-break repair.
Fig. 2: General features of NHEJ.
Fig. 3: Additions of nucleotides by pol X family polymerases at DNA ends.


  1. Zhao, B., Rothenberg, E., Ramsden, D. A. & Lieber, M. R. Nat. Rev. Mol. Cell Biol. 21, 765–781 (2020).

    Article  CAS  Google Scholar 

  2. Moore, J. K. & Haber, J. E. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  3. Han, L. & Yu, K. J. Exp. Med. 205, 2745–2753 (2008).

    Article  CAS  Google Scholar 

  4. Chiruvella, K. K., Liang, Z., Birkeland, S. R., Basrur, V. & Wilson, T. E. PLoS Genet. 9, e1003599 (2013).

    Article  CAS  Google Scholar 

  5. Cottarel, J. et al. J. Cell Biol. 200, 173–186 (2013).

    Article  CAS  Google Scholar 

  6. Goff, N. J. et al. Nucleic Acids Res. 50, 11058–11071 (2022).

    Article  Google Scholar 

  7. Zhao, B. et al. Nat. Commun. 10, 3588 (2019).

    Article  Google Scholar 

  8. Chandramouly, G. et al. Nat. Struct. Mol. Biol. (2022).

    Article  Google Scholar 

  9. Kaminski, A. M. et al. Nat. Commun. 13, 3806 (2022).

    Article  CAS  Google Scholar 

  10. Zhao, B., Watanabe, G. & Lieber, M. R. Nucleic Acids Res. 48, 3605–3618 (2020).

    Article  CAS  Google Scholar 

  11. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. DNA Repair 3, 817–826 (2004).

    Article  CAS  Google Scholar 

  12. Gu, J. & Lieber, M. R. Genes Dev. 22, 411–415 (2008).

    Article  CAS  Google Scholar 

  13. Lieber, M. R. J. Biol. Chem. 283, 1–5 (2008).

    Article  CAS  Google Scholar 

  14. Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Nat. Rev. Mol. Cell Biol. 23, 125–140 (2022).

    Article  CAS  Google Scholar 

Download references


M.R.L. is supported by National Interests of Health grants GM118009 and CA100504.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael R. Lieber.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieber, M.R. Pol X DNA polymerases contribute to NHEJ flexibility. Nat Struct Mol Biol 30, 5–8 (2023).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing