Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis

Abstract

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer–template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An SSB-binding mutation within Pol IV.
Fig. 2: SSB promotes access of Pol IV to stalled replication forks.
Fig. 3: SSB enriches Pol IV at lesion-stalled replication forks.
Fig. 4: Enrichment of Pol IV at stalled forks promotes TLS.
Fig. 5: SSB-driven ectopic localization of Pol IV or Pol I.
Fig. 6: Roles of SSB in pathway choice and fork compartmentalization.

Similar content being viewed by others

Data availability

The data sets from the current study are available from the corresponding author on reasonable request. A structure of E. coli Pol IV was retrieved from the PDB with accession code 4Q43. Source data are provided with this paper.

Code availability

The custom-written computer codes from the current study are available from the corresponding author on reasonable request.

References

  1. Fuchs, R. P. & Fujii, S. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb. Perspect. Biol. 5, a012682 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moldovan, G.-L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Dalrymple, B. P., Kongsuwan, K., Wijffels, G., Dixon, N. E. & Jennings, P. A. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc. Natl Acad. Sci. USA 98, 11627–11632 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Georgescu, R. E. et al. Structure of a sliding clamp on DNA. Cell 132, 43–54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Bunting, K. A., Roe, S. M. & Pearl, L. H. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J. 22, 5883–5892 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patoli, A. A., Winter, J. A. & Bunting, K. A. The UmuC subunit of the E. coli DNA polymerase V shows a unique interaction with the β-clamp processivity factor. BMC Struct. Biol. 13, 12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. López de Saro, F. J. & O’Donnell, M. Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc. Natl Acad. Sci. USA 98, 8376–8380 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurz, M., Dalrymple, B., Wijffels, G. & Kongsuwan, K. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein. J. Bacteriol. 186, 3508–3515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ozaki, S. et al. A replicase clamp-binding dynamin-like protein promotes colocalization of nascent DNA strands and equipartitioning of chromosomes in E. coli. Cell Rep. 4, 985–995 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Jeruzalmi, D. et al. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106, 417–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tan, K. W., Pham, T. M., Furukohri, A., Maki, H. & Akiyama, M. T. Recombinase and translesion DNA polymerase decrease the speed of replication fork progression during the DNA damage response in Escherichia coli cells. Nucleic Acids Res. 43, 1714–1725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pluciennik, A., Burdett, V., Lukianova, O., O’Donnell, M. & Modrich, P. Involvement of the clamp in methyl-directed mismatch repair in vitro. J. Biol. Chem. 284, 32782–32791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furukohri, A., Nishikawa, Y., Akiyama, M. T. & Maki, H. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA. Nucleic Acids Res. 40, 6039–6048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arad, G., Hendel, A., Urbanke, C., Curth, U. & Livneh, Z. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J. Biol. Chem. 283, 8274–8282 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Molineux, I. J. & Gefter, M. L. Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc. Natl Acad. Sci. USA 71, 3858–3862 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, S. et al. A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. Proc. Natl Acad. Sci. USA 116, 25591–25601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sigal, N., Delius, H., Kornberg, T., Gefter, M. L. & Alberts, B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc. Natl Acad. Sci. USA 69, 3537–3541 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shereda, R. D., Reiter, N. J., Butcher, S. E. & Keck, J. L. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J. Mol. Biol. 386, 612–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39, 6305–6314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uchida, K. et al. Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal. Mol. Microbiol. 70, 608–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Scotland, M. K. et al. A genetic selection for DinB mutants reveals an interaction between DNA polymerase IV and the replicative polymerase that is required for translesion synthesis. PLoS Genet. 11, e1005507 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jarosz, D. F., Godoy, V. G., Delaney, J. C., Essigmann, J. M. & Walker, G. C. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439, 225–228 (2006).

    Article  PubMed  Google Scholar 

  25. Bjedov, I. et al. Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176, 1431–1440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heltzel, J. M. H., Maul, R. W., Scouten Ponticelli, S. K. & Sutton, M. D. A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc. Natl Acad. Sci. USA 106, 12664–12669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benson, R. W., Cafarelli, T. M., Rands, T. J., Lin, I. & Godoy, V. G. Selection of dinB alleles suppressing survival loss upon dinB overexpression in Escherichia coli. J. Bacteriol. 196, 3023–3035 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Indiani, C., Langston, L. D., Yurieva, O., Goodman, M. F. & O’Donnell, M. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc. Natl Acad. Sci. USA 106, 6031–6038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thrall, E. S., Kath, J. E., Chang, S. & Loparo, J. J. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage. Nat. Commun. 8, 2170 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D. J. & Kapanidis, A. N. Single-molecule DNA repair in live bacteria. Proc. Natl Acad. Sci. USA 110, 8063–8068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Godoy, V. G. et al. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol. Cell 28, 1058–1070 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sladewski, T. E., Hetrick, K. M. & Foster, P. L. Escherichia coli Rep DNA helicase and error-prone DNA polymerase IV interact physically and functionally. Mol. Microbiol. 80, 524–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen, S. E., Godoy, V. G. & Walker, G. C. Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J. Bacteriol. 191, 665–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Cafarelli, T. M., Rands, T. J. & Godoy, V. G. The DinB•RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions. Environ. Mol. Mutagen. 55, 92–102 (2014).

    Article  PubMed  Google Scholar 

  35. Kath, J. E. et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc. Natl Acad. Sci. USA 111, 7647–7652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jergic, S. et al. A direct proofreader–clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J. 32, 1322–1333 (2013).

  37. Pagès, V., Mazón, G., Naiman, K., Philippin, G. & Fuchs, R. P. Monitoring bypass of single replication-blocking lesions by damage avoidance in the Escherichia coli chromosome. Nucleic Acids Res. 40, 9036–9043 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henrikus, S. S. et al. DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet. 14, e1007161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Heltzel, J. M. H., Maul, R. W., Wolff, D. W. & Sutton, M. D. Escherichia coli DNA Polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase. J. Bacteriol. 194, 3589–3600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328, 498–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lau, I. F. et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Davies, B. W. et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell. 36, 845–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Arifuzzaman, M. et al. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16, 686–691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, C. A., Zechner, E. L., Reems, J. A., McHenry, C. S. & Marians, K. J. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J. Biol. Chem. 267, 4074–4083 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Pagès, V. & Fuchs, R. P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300, 1300–1303 (2003).

    Article  PubMed  Google Scholar 

  48. Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Marceau, A. H. et al. Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J. 30, 4236–4247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Indiani, C., Patel, M., Goodman, M. F. & O’Donnell, M. E. RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proc. Natl Acad. Sci. USA 110, 5410–5415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ogawa, T. & Okazaki, T. Discontinuous DNA replication. Annu. Rev. Biochem. 49, 421–457 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, C. A., Zechner, E. L. & Marians, K. J. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J. Biol. Chem. 267, 4030–4044 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Ikeda, M. et al. DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res. 42, 846-8472 (2014).

  54. Yeeles, J. T. P. & Marians, K. J. Dynamics of leading-strand lesion skipping by the replisome. Mol. Cell 52, 855–865 (2013).

  55. Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell. 11, 1337–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Bell, J. C., Plank, J. L., Dombrowski, C. C. & Kowalczykowski, S. C. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491, 274–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Isogawa, A., Ong, J. L., Potapov, V., Fuchs, R. P. & Fujii, S. Pol V-mediated translesion synthesis elicits localized untargeted mutagenesis during post-replicative gap repair. Cell Rep. 24, 1290–1300 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Fuchs, R. P. Tolerance of lesions in E. coli: chronological competition between translesion synthesis and damage avoidance. DNA Repair 44, 51–58 (2016).

  59. Marians, K. J. Lesion bypass and the reactivation of stalled replication forks. Annu. Rev. Biochem. 87, 217–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujii, S. & Fuchs, R. P. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J. 23, 4342–4352 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jarosz, D. F., Cohen, S. E., Delaney, J. C., Essigmann, J. M. & Walker, G. C. A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase. Proc. Natl Acad. Sci. USA 106, 21137–21142 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanner, N. A. et al. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat. Struct. Mol. Biol. 15, 170–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Pritchard, A. E., Dallmann, H. G., Glover, B. P. & McHenry, C. S. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3δδ′. EMBO J. 19, 6536–6545 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Esnault, E., Valens, M., Espéli, O. & Boccard, F. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Sliusarenko, O., Heinritz, J., Emonet, T. & Jacobs-Wagner, C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zawadzki, P. et al. The localization and action of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC complex. Cell Rep. 13, 2587–2596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garza de Leon, F., Sellars, L., Stracy, M., Busby, S. J. W. & Kapanidis, A. N. Tracking low-copy transcription factors in living bacteria: the case of the lac repressor. Biophys. J. 112, 1316–1327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Arnett (Center for Macromolecular Interactions, Harvard Medical School) for training and assistance in using a CD spectropolarimeter, J. Keck (University of Wisconsin, Madison) for providing the fluorescein-conjugated SSB-Ct peptide, D. Li (University of Rhode Island) for providing the N2-FFdG-containing oligomer, J. Kath (Harvard Medical School) for construction of tetracycline-inducible strains, and S. Jergic (University of Wollongong) for providing the various purified Pol III polymerase complexes and helpful discussions. This work was supported by National Institutes of Health grants R01 GM114065 (to J.J.L.), The William F. Milton Fund (to S.C.), F32 GM113516 (to E.S.T.), and Agence Nationale de la Recherche (ANR) Grant (GenoBlock ANR-14-CE09-0010-01) (to V.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.C., E.S.T., L.L., S.C.P., V.P., and J.J.L. designed and performed research. S.C., E.S.T., L L., S.C.P., V.P., and J.J.L. analyzed data. S.C., E.S.T., L.L., V.P., and J.J.L. wrote the paper.

Corresponding author

Correspondence to Joseph J. Loparo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural and Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Beth Moorefield and Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 An SSB-binding defective mutant Pol IV.

a. Formation of nucleoprotein complexes between SSB4 or SSBΔF4 and ssDNA. (Top) An FP-based binding assay scheme. (Bottom) Interaction of T71-FL with SSB4 or SSBΔF4 was measured by changes in FP. Means ± ranges of duplicate measurements. Similar results were reproduced twice. b. Over-expression-induced cell death by RecQ, Exonuclease I, Topoisomerase III, Pol II, or their variants. R503A of RecQ, and R418A, R316A, and Q311A of Exonuclease I, SSB-binding mutations; R448A of RecQ, a negative control mutation; flag, N-terminal FLAG epitope; exoI, topoIII, and polB, coding sequences for exonuclease I, topoisomerase III, and Pol II respectively. c. Location of T120 within Pol IV. (Left) A front view showing the location of T120 relative to the catalytic cleft (yellow arrow). (Right) A side view showing the location of T120 relative to the C-terminal end (P341). C-terminal unstructured region (a.a. 342-351) containing the clamp interacting motif (a.a. 346-351) is missing in the structure. A crystal structure of E. coli Pol IV (PDB 4q43) is modified.

Source data

Extended Data Fig. 2 Fates of stalled replication and associated replication products in our rolling circle replication-based assays.

In these rolling circle DNA templates, the lesion-containing closed circular DNA is the template for leading strand synthesis. During rolling circle DNA replication, the growing leading strand serve as the template for lagging strand synthesis.

Extended Data Fig. 3 Pol IV must bind to the β2 clamp to mediate TLS at the fork.

The N2-FFdG-containing template was replicated in the presence of indicated concentrations of Pol IV or Pol IVΔC6 as shown in Fig. 2a. Pol IVΔC6, a mutant Pol IV lacking the C-terminal clamp binding motif.

Source data

Extended Data Fig. 4 Monitoring resolution pathway choice in cells.

a. Clamp binding motif (CBM) of the ε subunit of the Pol III core complex (αεθ). Shown are wild-type and mutant CBM sequences and their binding affinities to the β2 clamp. ε-cleft, the binding site on the β2 clamp for the CBM of the ε subunit; εQ, CBM with a weakening mutation; εL, CBM with a strengthening mutation. dnaQ(εQ), weakening mutation. θ subunit is omitted in the schematic diagram for simplicity. b. (Left) Site-specific insertion of a single N2-FFdG adduct into the E. coli genome in either the leading or lagging strand template. (Right) Resolution of lesion-stalled replication through TLS leads to the formation of blue-sectored colonies. White colonies represent resolution through DA. c. Deletion of lafU, which is replaced with an frt-kan-frt cassette as a dinB-linked marker for P1 transduction, does not influence pathway choice of N2-FFdG-stalled replisomes in cells. In all ΔlafU-containing strains, the kan cassette was flipped out. Means ± SDs (n = 6 for lafU+; n = 3 for ΔlafU; n, number of independent experiments). d. TLS over N2-FFdG in cells is primarily mediated by Pol IV. Deleting dinB reduces the resolution of N2-FFdG-stalled replisomes through TLS from ~60 to ~30%. Additional deletion of both polB and umuDC does not further reduce resolution through TLS. The residual TLS (~30%) in the ΔdinB ΔpolB ΔumuDC background is presumably mediated by Pol III. However, as Pol IV outcompetes Pol III in mediating TLS over N2-FFdG, the actual contribution of Pol III to TLS in the dinB+ background is likely less than estimated in the ΔdinB background. Ld, leading strand lesion; Lg, lagging strand lesion. Means ± SDs (n = 3; n, number of independent experiments). The statistical significance of the difference between the indicated pairs was determined by two-tailed Welch’s t-test; numbers, p values. e. Weakening the SSB-Pol IV interaction increases the MMS-induced SOS response. (Left) Resolution of stalled replication through repriming results in induction of the SOS damage response. TLS at the fork inhibits repriming. (Right) The MMS-induced SOS response in strains bearing indicated dinB alleles. The SOS reporter strains express green fluorescent protein (GFP) from a genomic expression cassette, in which the transcription of gfp is under the control of the sulA promoter (see ‘Methods’ for details). dinBplexA, a LexA repressor binding site mutant of the dinB promoter. Fluorescence intensities from single cells were measured for more than 90 × 103 cells using a flow cytometer. Means ± SDs (n > 90 × 103). The statistical significance of the difference between indicated pairs was determined by an unpaired t-test. ****, p < 0.0001. Similar results were reproduced twice.

Source data

Extended Data Fig. 5 SSB-driven ectopic localization of CLIPs.

a. Viable cell counts for +lacO250 dinB+ or ΔdinB strains (Fig. 5a) upon induction of LacIΔC11-SSB-Ct (Ct), LacIΔC11-ssb-CtDA,ΔF (CtDA,ΔF) or mock (-). Means ± SDs of triplicate measurements. Similar results were reproduced twice. b. Sensitivity of indicated assay strains to MMS upon induction of Ct or CtDA,ΔF. c. The C-terminal unstructured linker of SSB (SSBIDL in Fig. 1a) is not necessary for the formation of an ectopic SSB-Ct cluster that sensitizes cells to NFZ. Expression of LacIΔC11-SSB-Ct (Ct) or LacIΔC11-SSBIDL-Ct (IDL-Ct) comparably sensitized cells to NFZ. Addition of IPTG or binding mutations on SSB-Ct (CtDA,ΔF) eliminated this sensitization. SSBIDL-Ct, the entire C terminal unstructured linker of SSB including both SSBIDL and SSB-Ct. d. Sensitivity of the indicated strains to NFZ. Similar results were reproduced twice. e. Sensitivity of indicated assay strains to HU upon induction of Ct or CtDA,ΔF. Similar results were reproduced twice. f. ΔdinB is epistatic to polA-recQWH or hda-recQWH in sensitivity to NFZ. Sensitivity of the indicated strains to NFZ. polA- or hda-recQWH, the coding sequence for Pol I- or Hda-RecQWH. g. Sensitivity of indicated strains to NFZ. hda-recQWH or WH(R425A,R503A), the coding sequence for Hda-RecQWH or WH(R425A,R503A). h. Over-production of Crfc-RecQWH results in massive cell death. Expression of indicated genes was induced from a Tet-inducible genomic expression cassette. crfc-recQWH or WH(R425A,R503A), the coding sequence for Crfc-RecQWH or WH(R425A,R503A). Similar results were reproduced twice.

Source data

Supplementary information

Supplementary Information

Supplementary Figures 1–5.

Reporting Summary.

Supplementary Table 1

E. coli strains and plasmids used in this study.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Thrall, E.S., Laureti, L. et al. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis. Nat Struct Mol Biol 29, 932–941 (2022). https://doi.org/10.1038/s41594-022-00827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00827-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing