Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for DNA targeting by the Tn7 transposon

Abstract

Tn7 transposable elements are unique for their highly specific, and sometimes programmable, target-site selection mechanisms and precise insertions. All the elements in the Tn7 family utilize an AAA+ adaptor (TnsC) to coordinate target-site selection with transpososome assembly and to prevent insertions at sites already containing a Tn7 element. Owing to its multiple functions, TnsC is considered the linchpin in the Tn7 element. Here we present the high-resolution cryo-EM structure of TnsC bound to DNA using a gain-of-function variant of the protein and a DNA substrate that together recapitulate the recruitment to a specific DNA target site. TnsC forms an asymmetric ring on target DNA that segregates target-site selection and interaction with the paired-end complex to opposite faces of the ring. Unlike most AAA+ ATPases, TnsC uses a DNA distortion to find the target site but does not remodel DNA to activate transposition. By recognizing pre-distorted substrates, TnsC creates a built-in regulatory mechanism where ATP hydrolysis abolishes ring formation proximal to an existing element. This work unveils how Tn7 and Tn7-like elements determine the strict spacing between the target and integration sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TnsC forms oligomers in a DNA- and AMPPnP-dependent manner.
Fig. 2: TnsC-specific insertions decorate the surface of TnsCS-A225V.
Fig. 3: Cryo-EM structure of TnsCS-A225V bound to the 20-7-20 DNA.
Fig. 4: Asp402 orients the C-terminal region of TnsC.
Fig. 5: TnsC binds DNA through the ISM.
Fig. 6: The N-terminal side of the TnsC ring faces the DNA distortion.
Fig. 7: Model for DNA targeting by the Tn7 element.

Similar content being viewed by others

Data availability

Coordinates and structure factors for the TnsCS-A225V crystal structure are available in the RCSB Protein Data Bank (PDB 7MBW). The cryo-EM map for the structure of TnsCS-A225V bound to DNA (class 2.1.B) has been deposited in the EMDB (EMD-23757) and the associated model has been deposited in the RCSB Protein Data Bank (PDB 7MCS).

References

  1. Kazazian, H. H. Jr. & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peters, J. E. Tn7. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0010-2014 (2014).

  3. Peters, J. E., Fricker, A. D., Kapili, B. J. & Petassi, M. T. Heteromeric transposase elements: generators of genomic islands across diverse bacteria. Mol. Microbiol. 93, 1084–1092 (2014).

    CAS  PubMed  Google Scholar 

  4. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Petassi, M. T., Hsieh, S. C. & Peters, J. E. Guide RNA categorization enables target site choice in Tn7-CRISPR-Cas transposons. Cell 183, 1757–1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernandez, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system. Nature 577, 271–274 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Arciszewska, L. K., Drake, D. & Craig, N. L. Transposon Tn7. cis-Acting sequences in transposition and transposition immunity. J. Mol. Biol. 207, 35–52 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Stellwagen, A. E. & Craig, N. L. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics 145, 573–585 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuduvalli, P. N., Rao, J. E. & Craig, N. L. Target DNA structure plays a critical role in Tn7 transposition. EMBO J. 20, 924–932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, J. E., Miller, P. S. & Craig, N. L. Recognition of triple-helical DNA structures by transposon Tn7. Proc. Natl Acad. Sci. USA 97, 3936–3941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao, J. E. & Craig, N. L. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. J. Mol. Biol. 307, 1161–1170 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hickman, A. B. & Dyda, F. DNA transposition at work. Chem. Rev. 116, 12758–12784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. May, E. W. & Craig, N. L. Switching from cut-and-paste to replicative Tn7 transposition. Science 272, 401–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Han, Y. W. & Mizuuchi, K. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism. Mol. Cell 39, 48–58 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mizuno, N. et al. MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proc. Natl Acad. Sci. USA 110, E2441–E2450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holder, J. W. & Craig, N. L. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J. Mol. Biol. 401, 167–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ronning, D. R. et al. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. EMBO J. 23, 2972–2981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stellwagen, A. E. & Craig, N. L. Analysis of gain-of-function mutants of an ATP-dependent regulator of Tn7 transposition. J. Mol. Biol. 305, 633–642 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bainton, R. J., Kubo, K. M., Feng, J. N. & Craig, N. L. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72, 931–943 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Arias-Palomo, E. & Berger, J. M. An atypical AAA+ ATPase assembly controls efficient transposition through DNA remodeling and transposase recruitment. Cell 162, 860–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Choi, K. Y., Spencer, J. M. & Craig, N. L. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc. Natl Acad. Sci. USA 111, E2858–E2865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitra, R., McKenzie, G. J., Yi, L., Lee, C. A. & Craig, N. L. Characterization of the TnsD–attTn7 complex that promotes site-specific insertion of Tn7. Mob. DNA 1, 18 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bainton, R., Gamas, P. & Craig, N. L. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65, 805–816 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Stellwagen, A. E. & Craig, N. L. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem. Sci. 23, 486–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  32. Skubak, P. & Pannu, N. S. Automatic protein structure solution from weak X-ray data. Nat. Commun. 4, 2777 (2013).

    Article  PubMed  Google Scholar 

  33. Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. D Struct. Biol. 74, 68–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  43. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. McKown, R. L., Orle, K. A., Chen, T. & Craig, N. L. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J. Bacteriol. 170, 352–358 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L. & Keasling, J. D. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology (Reading) 147, 3241–3247 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Waddell, C. S. & Craig, N. L. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev. 2, 137–149 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Craig for critical reading of the manuscript, J. Rubinstein (SickKids, Toronto) for access to his Tecnai F20 during the early stages of this project and FEMR personnel at McGill University for data collection assistance. This work was funded by the Canadian Institutes of Health Research (PJT-155941, A.G.) and the National Institutes of Health (R01GM129118, J.E.P.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and A.G. conceived the study and interpreted the data. Y.S. characterized the TnsC complexes, collected data, and determined and analyzed the crystal and cryo-EM structures. J.G.-B. and J.O. assisted with cryo-EM data collection and processing. M.T.P. and J.E.P. performed and interpreted the lambda hop assays. A.G. and J.E.P. obtained funding for this study. A.G. prepared the manuscript, with input from all authors.

Corresponding author

Correspondence to Alba Guarné.

Ethics declarations

Competing interests

Cornell University has filed patent applications with J.E.P. as inventor involving CRISPR-Cas systems associated with transposons that are not related to this work. The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Peer Review Information

Supplementary Video 1

Conformational rearrangements of the C-terminal region of TnsCS-A225V. In the conformation seen in the crystal structure (first frame), TnsCS-A225V would not be able to form a ring because the C-terminal region of TnsC (residues 381–487, colored salmon) would overlap with the oligomerization interface. Therefore, to assemble the ring, this region must swivel ~180° around residue Asp402 to orient the C-terminal region outwards of the ring (last frame). The N-terminal extension (TnsD-interaction region) preceding the AAA+ domain and INS1 are colored in blue and teal for reference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Gomez-Blanco, J., Petassi, M.T. et al. Structural basis for DNA targeting by the Tn7 transposon. Nat Struct Mol Biol 29, 143–151 (2022). https://doi.org/10.1038/s41594-022-00724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00724-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing