Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NANOSCALE BIOPHYSICS

Stretching the resolution limit of atomic force microscopy

Atomic force microscopy (AFM) is unique in visualizing functional biomolecules in aqueous solution at ~1 nm resolution. By borrowing localization methods from fluorescence microscopy, AFM has been shown to discern structural domains that may be separated by only a few Ångströms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that can limit spatial resolution in bio-AFM.
Fig. 2: From peaks to peaking probability and LAFM.

References

  1. Walker, M. L. et al. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  2. Yildiz, A. et al. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  3. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Nature 468, 72–76 (2010).

    Article  CAS  Google Scholar 

  4. Heath, G. R. et al. Nature 594, 385–390 (2021).

    Article  CAS  Google Scholar 

  5. Fukuma, T., Kobayashi, K., Matsushige, K. & Yamada, H. Appl. Phys. Lett. 87, 034101 (2005).

    Article  Google Scholar 

  6. Hoogenboom, B. W. et al. Appl. Phys. Lett. 88, 193109 (2006).

    Article  Google Scholar 

  7. Engel, A. & Müller, D. J. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  8. Schabert, F. A. & Engel, A. Biophys. J. 67, 2394–2403 (1994).

    Article  CAS  Google Scholar 

  9. Asakawa, H. et al. Biophys. J. 101, 1270–1276 (2011).

    Article  CAS  Google Scholar 

  10. Ido, S. et al. ACS Nano 7, 1817–1822 (2013).

    Article  CAS  Google Scholar 

  11. Dufrêne, Y. F. et al. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  Google Scholar 

  12. Gan, Y. Surf. Sci. Rep. 64, 99–121 (2009).

    Article  CAS  Google Scholar 

  13. Odin, C., Aimé, J. P., El Kaakour, Z. & Bouhacina, T. Surf. Sci. 317, 321–340 (1994).

    Article  CAS  Google Scholar 

  14. Fechner, P. et al. Biophys. J. 96, 3822–3831 (2009).

    Article  CAS  Google Scholar 

  15. Scheuring, S., Müller, D. J., Stahlberg, H., Engel, H.-A. & Engel, A. Eur. Biophys. J. 31, 172–178 (2002).

    Article  CAS  Google Scholar 

  16. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  17. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  18. Rust, M. J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  19. Pyne, A., Thompson, R., Leung, C., Roy, D. & Hoogenboom, B. W. Small 10, 3257–3261 (2014).

    Article  CAS  Google Scholar 

  20. Scheuring, S. et al. EMBO J. 18, 4981–4987 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart W. Hoogenboom.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoogenboom, B.W. Stretching the resolution limit of atomic force microscopy. Nat Struct Mol Biol 28, 629–630 (2021). https://doi.org/10.1038/s41594-021-00638-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00638-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing