Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles

Abstract

The HIV-1 envelope glycoprotein (Env) trimer, composed of gp120 and gp41 subunits, mediates viral entry into cells. Recombinant Env trimers have been studied structurally, but characterization of Env embedded in intact virus membranes has been limited to low resolution. Here, we deploy cryo-electron tomography and subtomogram averaging to determine the structures of Env trimers on aldrithiol-2 (AT-2)-inactivated virions in ligand-free, antibody-bound and CD4-bound forms at subnanometer resolution. Tomographic reconstructions document molecular features consistent with high-resolution structures of engineered soluble and detergent-solubilized Env trimers. One of three conformational states previously predicted by smFRET was not observed by cryo-ET, potentially owing to AT-2 inactivation. We did observe Env trimers to open in situ in response to CD4 binding, with an outward movement of gp120-variable loops and an extension of a critical gp41 helix. Overall features of Env trimer embedded in AT-2-treated virions appear well-represented by current engineered trimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ cryo-ET structure of ligand-free HIV-1 Env trimer.
Fig. 2: Cryo-ET structure of HIV-1 Env in complex with antibodies 10-1074 and 3BNC117 at subnanometer resolution reveals domain features of in situ trimer.
Fig. 3: AT-2 treatment increases the prevalence of state 2 HIV-1 Env on virus.
Fig. 4: In situ cryo-ET structure at 9.7-Å resolution of sCD4D1D2- and 17b-bound Env trimer.
Fig. 5: The central helical density of gp41 in situ resembles that observed in high-resolution SOSIP structures.
Fig. 6: sCD4- and 17b-bound Env trimer adopts a more open conformation in situ in the HR1-N and HR2 regions of gp41.

Similar content being viewed by others

Data availability

In situ structures of HIV-1 Env have been deposited to the EMDB with the following codes: EMD-21412 (ligand-free Env), EMD-21411 (CD4- and 17b-bound Env) and EMD-21413 (10-1074- and 3BNC117-bound Env).

References

  1. Harrison, S. C. Viral membrane fusion. Virology 479–480, 498–507 (2015).

    PubMed  Google Scholar 

  2. Blumenthal, R., Durell, S. & Viard, M. HIV entry and envelope glycoprotein-mediated fusion. J. Biol. Chem. 287, 40841–40849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547, 360–363 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rizzuto, C. D. et al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949–1953 (1998).

    CAS  PubMed  Google Scholar 

  6. Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318–323 (2019).

    CAS  PubMed  Google Scholar 

  7. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    CAS  PubMed  Google Scholar 

  8. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    CAS  PubMed  Google Scholar 

  9. Kwon, Y. D. et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 22, 522–531 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Julien, J. P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    CAS  PubMed  Google Scholar 

  11. Lyumkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342, 1484–1490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Torrents de la Peña, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 1805–1817 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Wang, H. et al. Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop. Proc. Natl Acad. Sci. USA 113, E7151–E7158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, H., Barnes, C. O., Yang, Z., Nussenzweig, M. C. & Bjorkman, P. J. Partially open HIV-1 envelope structures exhibit conformational changes relevant for coreceptor binding and fusion. Cell Host Microbe 24, 579–592.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, Z., Wang, H., Liu, A. Z., Gristick, H. B. & Bjorkman, P. J. Asymmetric opening of HIV-1 Env bound to CD4 and a coreceptor-mimicking antibody. Nat. Struct. Mol. Biol. 26, 1167–1175 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Binley, J. M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanders, R. W. et al. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76, 8875–8889 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).

  20. Chuang, G. Y. et al. Structure-based design of a soluble prefusion-closed HIV-1 Env trimer with reduced CD4 affinity and improved immunogenicity. J. Virol. 91, e02268-16 (2017).

  21. Lai, Y. T. et al. Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nat. Commun. 10, 47 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rutten, L. et al. A universal approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers. Cell Rep. 23, 584–595 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sliepen, K. et al. Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nat. Commun. 10, 2355 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Guenaga, J. et al. Glycine substitution at helix-to-coil transitions facilitates the structural determination of a stabilized subtype C HIV envelope glycoprotein. Immunity 46, 792–803.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar, A. et al. Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nat. Commun. 9, 1956 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Kong, L. et al. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nat. Commun. 7, 12040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351, 1043–1048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, J., Peng, H., Chen, B. & Harrison, S. C. Cryo-EM structure of full-length HIV-1 Env bound with the Fab of antibody PG16. J. Mol. Biol. 14, 1158–1168 (2020).

  29. Lee, J. H. et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46, 690–702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, C. C. et al. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–8 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Q. et al. Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nat. Struct. Mol. Biol. 24, 370–378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, X. et al. HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. Elife 7, e34271 (2018).

  33. Khasnis, M. D., Halkidis, K., Bhardwaj, A. & Root, M. J. Receptor activation of HIV-1 Env leads to asymmetric exposure of the gp41 trimer. PLoS Pathog. 12, e1006098 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Zhu, P. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847–852 (2006).

    CAS  PubMed  Google Scholar 

  35. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zanetti, G., Briggs, J. A. G., Grünewald, K., Sattentau, Q. J. & Fuller, S. D. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog. 2, e83 (2006).

  37. Lu, M. et al. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 568, 415–419 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munro, J. B. et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759–763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossio, J. L. et al. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J. Virol. 72, 7992–8001 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chertova, E. et al. Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J. Virol. 76, 5315–5325 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Panico, M. et al. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci. Rep. 6, 32956 (2016).

  42. Moyo, T. et al. Molecular basis of unusually high neutralization resistance in tier 3 HIV-1 strain 253-11. J. Virol. 92, e02261-17 (2018).

  43. Schoofs, T. et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity 50, 1513–1529 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Escolano, A. et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 570, 468–473 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schommers, P. et al. Restriction of HIV-1 escape by a highly broad and potent neutralizing antibody. Cell 180, 471–489 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Henderson, R. et al. Disruption of the HIV-1 envelope allosteric network blocks CD4-induced rearrangements. Nat. Commun. 11, 520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gristick, H. B. et al. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat. Struct. Mol. Biol. 23, 906–915 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stadtmueller, B. M. et al. DEER spectroscopy measurements reveal multiple conformations of HIV-1 SOSIP envelopes that show similarities with envelopes on native virions. Immunity 49, 235–246 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sattentau, Q. J. HIV gp120: double lock strategy foils host defences. Structure 6, 945–949 (1998).

    CAS  PubMed  Google Scholar 

  50. Del Prete, G. Q. et al. Derivation and characterization of a simian immunodeficiency virus SIVmac239 variant with tropism for CXCR4. J. Virol. 83, 9911–9922 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bess, J. W.Jr., Gorelick, R. J., Bosche, W. J., Henderson, L. E. & Arthur, L. O. Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 230, 134–144 (1997).

    CAS  PubMed  Google Scholar 

  52. Arthur, L. O. et al. Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res. Hum. Retroviruses 14(Suppl. 3), S311–319 (1998).

    CAS  PubMed  Google Scholar 

  53. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  54. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  56. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

    PubMed  Google Scholar 

  57. Agulleiro, J. I. & Fernandez, J. J. Tomo3D 2.0-Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).

    PubMed  Google Scholar 

  58. Winkler, H. 3D reconstruction and processing of volumetric data in cryo-electron tomography. J. Struct. Biol. 157, 126–137 (2007).

    CAS  PubMed  Google Scholar 

  59. Winkler, H. et al. Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J. Struct. Biol. 165, 64–77 (2009).

    CAS  PubMed  Google Scholar 

  60. Liu, J., Wright, E. R. & Winkler, H. 3D visualization of HIV virions by cryoelectron tomography. Methods Enzymol. 483, 267–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  PubMed  Google Scholar 

  62. Bordoli, L. & Schwede, T. Automated protein structure modeling with SWISS-MODEL workspace and the protein model portal. Methods Mol. Biol. 857, 107–136 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pettersen, E. F. et al. UCSF chimera — a visualization system for exploratory research and analysis. J. Comp. Chem. 25, 1605–1612 (2004).

    CAS  Google Scholar 

  64. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  Google Scholar 

  66. Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants RO1AI150560 to W.M., J.L. and S.C.B.; RO1 GM098859 to S.C.B.; PO1 AI150471 to W.M.; by a ViiV research grant to W.M. and J.L.; by an AmfAR (The Foundation for AIDS Research) grant, 109998-67-RKVA, to M.L.; by a grant from National Natural Science Foundation of China (No.31630002) to Z.L.; by the International AIDS Vaccine Initiative’s (IAVI’s) Neutralizing Antibody Consortium to P.D.K.; by the Intramural Research Program of the Vaccine Research Center (NIAID, NIH) to P.D.K.; and by contracts 75N91019D00054 and HHSN261200800001E from the National Cancer Institute, National Institutes of Health, to J.B. and J.D.L. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

W.M., J.L. and P.D.K. conceived the project. W.L. performed cryo-ET experiments and data analysis. Z.L. performed data analysis and modeling, and wrote the manuscript draft. M.L. performed smFRET experiments and analysis. J.B. and J.D.L. provided BAL virions with high Env trimer content. C.W.C. and B.Z. provided sCD4D1D2, 17b, 1010-74 and 3BNC117 (Fabs). J.G. and T.Z. contributed structural analysis. D.S.T. and S.C.B. contributed smFRET technologies and software. J.L., P.D.K. and W.M. supervised all work. Z.L, P.D.K., W.M. and J.L. prepared the manuscript with input from all authors.

Corresponding authors

Correspondence to Walther Mothes or Jun Liu.

Ethics declarations

Competing interests

S.C.B. holds an equity interest in Lumidyne Technologies. S.C.B. and W.M. hold the patent US 959385324 B2. W.M. and J.L. are recipients of a ViiV research grant.

Additional information

Peer review information Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of cryo-ET maps of the ligand-free HIV-1/SIV Env trimer.

a, In situ structure of Env trimer on the surface of SIV mac329 virus with truncated cytoplasmic tail (EMD 1246). b, Structure of Env trimer of SIVmneE11S virus (EMD 1216). c, Structure of Env trimer of HIV-1BaL virus (EMD 5019). d, Structure of ligand-free HIV-1BaL Env trimer (current work).

Extended Data Fig. 2 Cryo-ET resolution estimation.

a, Resolution estimation using FSC 0.5 as cutoff value. b, Local resolution estimation of ligand-free, 10-1074 and 3BNC117 double antibodies, and sCD4-17b bound HIV-1BaL Env trimer is estimated with Resmap. For each map, two projections are shown: Z plane projection is shown as a top view, Y plane projection is shown as a side view.

Extended Data Fig. 3 Model fitting. Env trimers from other two strains, omitting the binding antibodies, are rigid body docked into the cryo-ET map.

a, 3H109L and 35O22 bound B41 SOSIP.664 (PDB 6MUF) b, PGT122 and PGV19 bound BG505 NFL.664 (PDB 6B0N). c, Segmented characteristic helical densities of gp41 subunits in the cryo-ET map. d-f, Trimeric HR1C, partial HR1N and HR2 from 4ZMJ fit well into the rod-shape densities.

Extended Data Fig. 4 Visualization of variable loops and glycosylation sites on the top of the ligand-free Env trimer map.

a, Variable loop regions on the top of the Env trimer are differently colored in the map. b, Potential glycosylation densities at the apical surface of BaL strain virus. Ligand-free monomer of fully glycosylated JR-FL∆CT (PDB 5FUU) was docked in the cryo-ET map. The glycan moiety was shown as sticks.

Extended Data Fig. 5 Comparison between the cryo-ET model for HIV-1BaL Env and BG505 SOSIP.664 in complex with different antibody combinations.

Each ligand and its binding protomer were projected into central plane and the dihedral angles were measured with UCSF Chimera. a, Cryo-ET model of 10-1074-3 and BNC117 bound Env. b, 10-1074 bound BG505 SOSIP-based immunogen RC1 (PDB 6ORN). c, 3BNC117 bound BG505 SOSIP.664 (PDB 5V8M). d, 10-1074 and IOMA bound BG505 SOSIP.664 (PDB 5T3Z). All angular values are listed in panel (e).

Extended Data Fig. 6 10-1074 and 3BNC117 cannot stabilize State 1 of AT-2 treated HIV-1BaL Env.

a, b, 10-1074 and 3BNC117 Fabs exhibit a preference for State 1 of virus Env in the absence of AT2-inactivation (a) Representative fluorescence (top, donor Cy3 in green and acceptor Cy5 in red) and FRET trace (bottom, resulting FRET in blue and hidden Markov model idealization in red) of individual V1V4 labeled ligand-free HIV-1NL4-3 virus Env. (b) FRET histogram of HIV-1NL4-3 Env in the presence of broadly neutralization antibodies 10-1074 (50 μg ml−1) and 3BNC117 (50 μg ml−1), overlaid with that of ligand-free HIV-1NL4-3 Env. c, d, 10-1074 and 3BNC117 are unable to restore State 1-predominance observed on native virus Env after AT-2 treatment shifted the conformational equilibrium towards State 2. (c, d) experiments as in (a, b) of AT-2 chemically inactivated HIV-1NL4-3 virus Env, respectively. e, Quantification of relative state occupancy of HIV-1NL4-3 virus Env, derived from FRET histograms in (b, d).

Extended Data Fig. 7 The conformational effect of AT-2 lies in the ectodomain.

FRET histograms of HIV-1JR-FL Env without cytoplasmic tail under conditions: ligand-free and untreated (a); ligand-free Env after AT-2 treatment (b); and in the additional presence of 10-1074 (50 μg ml−1) and 3BNC117 (50 μg ml−1) (c). d, Quantification of the corresponding relative state occupancies.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, W., Lu, M. et al. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nat Struct Mol Biol 27, 726–734 (2020). https://doi.org/10.1038/s41594-020-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0452-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing