Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the stress-induced photosystem I–IsiA antenna supercomplex

Abstract

Photochemical conversion in oxygenic photosynthesis takes place in two large protein–pigment complexes named photosystem II and photosystem I (PSII and PSI, respectively). Photosystems associate with antennae in vivo to increase the size of photosynthetic units to hundreds or thousands of pigments. Regulation of the interactions between antennae and photosystems allows photosynthetic organisms to adapt to their environment. In low-iron environments, cyanobacteria express IsiA, a PSI antenna, critical to their survival. Here we describe the structure of the PSI–IsiA complex isolated from the mesophilic cyanobacterium Synechocystis sp. PCC 6803. This 2-MDa photosystem–antenna supercomplex structure reveals more than 700 pigments coordinated by 51 subunits, as well as the mechanisms facilitating the self-assembly and association of IsiA with multiple PSI assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the PSI–IsiA supercomplex.
Fig. 2: Organization of two chlorophyll layers in PSI–IsiA.
Fig. 3: Structure of IsiA.
Fig. 4: Conformational flexibility among IsiA dimers.
Fig. 5: Luminal chlorophylls facilitate excitation energy transfer from IsiA to PSI.
Fig. 6: Key protein–protein interactions in PSI–IsiA.

Similar content being viewed by others

Data availability

The final model (PDB 6NWA) and map (EMD 0524) were deposited in the Protein Databank and Electro-Magnetic Database, respectively. All other data are available from the authors upon reasonable request.

Code availability

Dipole orientation values were calculated using an R script available from the author upon reasonable request.

References

  1. Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521–565 (2006).

    Article  CAS  Google Scholar 

  2. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article  CAS  Google Scholar 

  3. Buchel, C. Evolution and function of light harvesting proteins. J. Plant Physiol. 172, 62–75 (2015).

    Article  Google Scholar 

  4. Saer, R. G. & Blankenship, R. E. Light harvesting in phototrophic bacteria: structure and function. Biochem. J. 474, 2107–2131 (2017).

    Article  CAS  Google Scholar 

  5. La Roche, J. et al. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc. Natl Acad. Sci. USA 93, 15244–15248 (1996).

    Article  Google Scholar 

  6. Guikema, J. A. & Sherman, L. A. Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol. 73, 250–256 (1983).

    Article  CAS  Google Scholar 

  7. Laudenbach, D. E. & Straus, N. A. Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J. Bacteriol. 170, 5018–5026 (1988).

    Article  CAS  Google Scholar 

  8. Burnap, R. L., Troyan, T. & Sherman, L. A. The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43′) is encoded by the isiA gene. Plant Physiol. 103, 893–902 (1993).

    Article  CAS  Google Scholar 

  9. Havaux, M. et al. The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett. 579, 2289–2293 (2005).

    Article  CAS  Google Scholar 

  10. Singh, A. K., Li, H. & Sherman, L. A. Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. Physiol. Plant. 120, 27–35 (2004).

    Article  CAS  Google Scholar 

  11. Bibby, T. S., Nield, J. & Barber, J. Three-dimensional model and characterization of the iron stress-induced CP43′-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J. Biol. Chem. 276, 43246–43252 (2001).

    Article  CAS  Google Scholar 

  12. Boekema, E. J. et al. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745–748 (2001).

    Article  CAS  Google Scholar 

  13. Bibby, T. S., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743–745 (2001).

  14. Kouril, R. et al. Structure and functional role of supercomplexes of IsiA and Photosystem I in cyanobacterial photosynthesis. FEBS Lett. 579, 3253–3257 (2005).

    Article  CAS  Google Scholar 

  15. Chauhan, D. et al. A novel photosynthetic strategy for adaptation to low-iron aquatic environments. Biochemistry 50, 686–692 (2011).

    Article  CAS  Google Scholar 

  16. Yeremenko, N. et al. Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43, 10308–10313 (2004).

    Article  CAS  Google Scholar 

  17. Ihalainen, J. A. et al. Aggregates of the chlorophyll-binding protein IsiA (CP43′) dissipate energy incyanobacteria. Biochemistry 44, 10846–10853 (2005).

    Article  CAS  Google Scholar 

  18. Melkozernov, A. N., Bibby, T. S., Lin, S., Barber, J. & Blankenship, R. E. Time-resolved absorption and emission show that the CP43′ antenna ring of iron-stressed Synechocystis sp. PCC6803 is efficiently coupled to the Photosystem I reaction center core. Biochemistry 42, 3893–3903 (2003).

    Article  CAS  Google Scholar 

  19. Andrizhiyevskaya, E. G., Frolov, D., Van Grondelle, R. & Dekker, J. P. Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim. Biophys. Acta 1656, 104–113 (2004).

    Article  CAS  Google Scholar 

  20. Garczarek, L., Hess, W. R., Holtzendorff, J., van der Staay, G. W. M. & Partensky, F. Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc. Natl Acad. Sci. USA 97, 4098 LP–4094101 (2000).

    Article  Google Scholar 

  21. Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051 (2003).

    Article  CAS  Google Scholar 

  22. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  23. Andrizhiyevskaya, E. G. et al. Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. Biochim. Biophys. Acta 1556, 265–272 (2002).

    Article  CAS  Google Scholar 

  24. Qin, X., Suga, M., Kuang, T. & Shen, J.-R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  Google Scholar 

  25. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357, 815–820 (2017).

    Article  CAS  Google Scholar 

  26. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    Article  CAS  Google Scholar 

  27. Pi, X. et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA 115, 4423–4428 (2018).

    Article  CAS  Google Scholar 

  28. Antoshvili, M., Caspy, I., Hippler, M. & Nelson, N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 139, 499–508 (2018).

  29. Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4, e07433 (2015).

    Article  Google Scholar 

  30. Chen, H.-Y. S., Liberton, M., Pakrasi, H. B. & Niedzwiedzki, D. M. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. Biochim. Biophys. Acta 1858, 249–258 (2017).

    Article  CAS  Google Scholar 

  31. Berera, R., van Stokkum, I. H. M., Kennis, J. T. M., van Grondelle, R. & Dekker, J. P. The light-harvesting function of carotenoids in the cyanobacterial stress-inducible IsiA complex. Chem. Phys. 373, 65–70 (2010).

  32. Kouril, R. et al. Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL. Biochim. Biophys. Acta 1706, 262–266 (2005).

    Article  CAS  Google Scholar 

  33. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331 (2017).

    Article  CAS  Google Scholar 

  34. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  Google Scholar 

  35. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  36. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63 (2013).

    Article  Google Scholar 

  37. Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta 1859, 645–654 (2018).

    Article  CAS  Google Scholar 

  38. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  39. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  40. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9A. Nature 473, 55–60 (2011).

    Article  CAS  Google Scholar 

  41. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, (213–221 (2010).

    Google Scholar 

  42. Afonine, P. V., Headd, J. J., Terwilliger, T. C. & Adams, P. D. New tool: phenix.real_space_refine. Comput. Crystallogr. Newsl. 4, 43–44 (2013).

    Google Scholar 

  43. The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).

  44. Förster, T. Ein beitrag zur theorie der photosynthese. Z. Naturforsch. 2b, 174–182 (1947).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Nelson and P. Fromme for critical reading of the manuscript, and O. Rog for many discussions. We would like to acknowledge the use of the Titan Krios at the Erying Materials Center at Arizona State University, and the funding of this instrument by the National Science Foundation (No. MRI 1531991). This study is funded by a startup grant from Arizona State University.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and H.T. performed experiments, analyzed data and wrote the manuscript. J.L. performed experiments. D.W. performed experiments. P.-L.C. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Yuval Mazor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Cryo-EM structure of PSI – IsiA.

A. Sucrose gradients (10% – 60% sucrose) of IsiA-containing complexes showing that at our growth conditions there is one major fraction of PSI – IsiA. B. An SDS-PAGE gel showing the subunit composition of the main chlorophyll containing fraction from the first (I) and second (II) sucrose gradient showing the presence of IsiA. The same subunit composition is shown for the sample used for the cryo-EM experiments (Grid). C. Flow chart describing the workflow of image processing. D. A representative micrograph together with the power spectrum and CTF fit. In vitreous ice, PSI – IsiA particles are visible in different orientations as projections (a subset is surrounded by a red ring). E. Representative 2D class averages generated from unsupervised 2D classification. F. Top and side views, respectively, of the Euler angle distributions of particles obtained in the final refinement with C3 symmetry.

Supplementary Figure 2 Model resolution and map examples.

A, B, C and D: The final 3D map colored according to the local resolution estimates obtained from ResMap, seen from the Lumen ‘A’, Stroma ‘B’, membrane ‘C’ and membrane section with surface capping along the dashed line ‘D’ orientations. E. Plots of Fourier shell correlation (FSC) against resolution. F. Representative map sections showing transmembrane helices, carotenoids, chlorophylls and lipids from PSI – IsiA. The identity of each one is indicated above.

Supplementary Figure 3 IsiA orientation and alignment with CP43.

A. The orientation of IsiA monomers in PSI-IsiA. Only transmembrane segments are shown. Subunits are colored as in Fig. 1 in the main text. The six IsiA transmembrane helices are marked in position ‘a’. B. A detailed view of the E loop and two IsiA unique chlorophylls together with their coordinating residues, Gln 316 for chlorophyll 8 and the backbone carbonyl of Ile 282 for chlorophyll 17. C. The orientation of CP43 and D1 compared with that of the IsiA dimer. The figure shows the transmembrane helices of the respective subunits (labeled according to sequence position). D. Comparing the chlorophylls and carotenoids of IsiA and CP43 shows the position of two new chlorophylls (numbered 8 and 17) as well as a new carotenoid (B1) in addition to the three similar positions in CP43.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toporik, H., Li, J., Williams, D. et al. The structure of the stress-induced photosystem I–IsiA antenna supercomplex. Nat Struct Mol Biol 26, 443–449 (2019). https://doi.org/10.1038/s41594-019-0228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0228-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing