Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

DNA SUPERCOILING

Twist to disentangle

Subjects

Intertwining of DNA molecules frequently results in the formation of ‘ultrafine bridges’ between sister chromatids that need to be resolved during segregation of the chromatids into daughter cells. Although it has been established that these DNA bridges are coated by the helicase PICH, it has remained unknown how PICH assists in their resolution. A study now reveals that PICH directs the formation of positive DNA supercoiling in the presence of type I topoisomerases to promote the subsequent disentanglement of these DNA helices by type II topoisomerases. Remarkably, PICH might be able to reconfigure DNA topology by extruding loops of DNA while it moves along the double helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model for the resolution of DNA catenation by PICH and topoisomerases.

References

  1. Mariezcurrena, A. & Uhlmann, F. Genes Dev. 31, 2151–2161 (2017).

    Article  CAS  Google Scholar 

  2. Baumann, C., Körner, R., Hofmann, K. & Nigg, E. A. Cell 128, 101–114 (2007).

    Article  CAS  Google Scholar 

  3. Chan, K. L., North, P. S. & Hickson, I. D. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  Google Scholar 

  4. Fernandez-Casanas, M. & Chan, K. L. Genes (Basel) 9, 623 (2018).

    Article  Google Scholar 

  5. Nielsen, C. F. et al. Nat. Commun. 6, 8962 (2015).

    Article  CAS  Google Scholar 

  6. Piskadlo, E., Tavares, A. & Oliveira, R. A. eLife 6, e26120 (2017).

    Article  Google Scholar 

  7. Baxter, J. et al. Science 331, 1328–1332 (2011).

    Article  CAS  Google Scholar 

  8. Bizard, A. H. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0201-6 (2019).

  9. Lulchev, P. & Klostermeier, D. Nucleic Acids Res. 42, 8200–8213 (2014).

    Article  CAS  Google Scholar 

  10. Biebricher, A. et al. Mol. Cell 51, 691–701 (2013).

    Article  CAS  Google Scholar 

  11. Sarlós, K. et al. Nat. Struct. Mol. Biol. 25, 868–876 (2018).

    Article  Google Scholar 

  12. Kimura, K. & Hirano, T. Cell 90, 625–634 (1997).

    Article  CAS  Google Scholar 

  13. Bazett-Jones, D. P., Kimura, K. & Hirano, T. Mol. Cell 9, 1183–1190 (2002).

    Article  CAS  Google Scholar 

  14. Terakawa, T. et al. Science 358, 672–676 (2017).

    Article  CAS  Google Scholar 

  15. Ganji, M. et al. Science 360, 102–105 (2018).

    Article  CAS  Google Scholar 

  16. Eeftens, J. M. et al. EMBO J. 36, 3448–3457 (2017).

    Article  CAS  Google Scholar 

  17. Bettotti, P. et al. Sci. Rep. 8, 6163 (2018).

    Article  Google Scholar 

  18. Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Cold Spring Harb. Symp. Quant. Biol. 82, 45–55 (2017).

    Article  Google Scholar 

  19. Dekker, J. & Mirny, L. Cell 164, 1110–1121 (2016).

    Article  CAS  Google Scholar 

  20. Gilmore, J. L. et al. Biochemistry 48, 10492–10498 (2009).

    Article  CAS  Google Scholar 

  21. Crampton, N. et al. Proc. Natl Acad. Sci. USA 104, 12755–12760 (2007).

    Article  CAS  Google Scholar 

  22. Corless, S., Naughton, C. & Gilbert, N. Genom. Data 2, 264–267 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian H. Haering.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, S., Haering, C.H. Twist to disentangle. Nat Struct Mol Biol 26, 252–253 (2019). https://doi.org/10.1038/s41594-019-0209-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0209-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing