Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation

Abstract

The functionally tolerated sequence space of proteins can now be explored in an unprecedented way, owing to the expansion of genomic databases and the development of high-throughput methods to interrogate protein function. For signaling proteins, several recent studies have shown how the analysis of sequence variation leverages the available protein-structure information to provide new insights into specificity and allosteric regulation. In this Review, we discuss recent work that illustrates how this emerging approach is providing a deeper understanding of signaling proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complementary approaches to elucidate molecular mechanisms of signal transduction.
Fig. 2: Insights into the interaction specificity of signaling proteins.
Fig. 3: Sequence and structural features that control kinase dynamics and allostery.
Fig. 4: Allosteric activation of Ras.

Similar content being viewed by others

References

  1. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 15, 5.6.1–5.6.32 (2014).

    Article  Google Scholar 

  3. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Berman, H. M. et al. The cAMP binding domain: an ancient signaling module. Proc. Natl. Acad. Sci. USA 102, 45–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kornev, A. P. & Taylor, S. S. Dynamics-driven allostery in protein kinases. Trends Biochem. Sci. 40, 628–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Shah, N. H., Amacher, J. F., Nocka, L. M. & Kuriyan, J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit. Rev. Biochem. Mol. Biol. 53, 535–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lorenz, S., Cantor, A. J., Rape, M. & Kuriyan, J. Macromolecular juggling by ubiquitylation enzymes. BMC Biol. 11, 65 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wittinghofer, A. & Vetter, I. R. Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. O’Rourke, L. & Ladbury, J. E. Specificity is complex and time consuming: mutual exclusivity in tyrosine kinase-mediated signaling. Acc. Chem. Res. 36, 410–416 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Kapp, O. H. et al. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein Sci. 4, 2179–2190 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 14, 249–261 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One 6, e28766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA 108, E1293–E1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Teşileanu, T., Colwell, L. J. & Leibler, S. Protein sectors: statistical coupling analysis versus conservation. PLOS Comput. Biol. 11, e1004091 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pauling, L., Zuckerkandl, E., Henriksen, T. & Lövstad, R. Chemical paleogenetics:. molecular ‘restoration studies’ of extinct forms of life. Acta Chem. Scand. 17 (Suppl.), 9–16 (1963).

    Article  Google Scholar 

  25. Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345, 86–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Stackhouse, J., Presnell, S. R., McGeehan, G. M., Nambiar, K. P. & Benner, S. A. The ribonuclease from an extinct bovid ruminant. FEBS Lett. 262, 104–106 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A. & Sauer, R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247, 1306–1310 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Reidhaar-Olson, J. F. & Sauer, R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241, 53–57 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Lim, W. A. & Sauer, R. T. Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature 339, 31–36 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, B. J. & Shah, N. P. Identification and characterization of activating ABL1 1b kinase mutations: impact on sensitivity to ATP-competitive and allosteric ABL1 inhibitors. Leukemia 31, 1096–1107 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Mukherjee, S. et al. Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 45(D1), D446–D456 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hochberg, G. K. A. & Thornton, J. W. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 46, 247–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rojas, A. M., Fuentes, G., Rausell, A. & Valencia, A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol. 196, 189–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Laudet, V., Hänni, C., Coll, J., Catzeflis, F. & Stéhelin, D. Evolution of the nuclear receptor gene superfamily. EMBO J. 11, 1003–1013 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461, 515–519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harms, M. J. & Thornton, J. W. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512, 203–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159, 58–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4, e07864 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, C. J. & Turk, B. E. Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem. Sci. 43, 380–394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Hutti, J. E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods 1, 27–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Shah, N. H. et al. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. eLife 5, e20105 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shah, N. H., Löbel, M., Weiss, A. & Kuriyan, J. Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. eLife 7, e35190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cantor, A. J., Shah, N. H. & Kuriyan, J. Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc. Natl. Acad. Sci. USA 115, E7303–E7312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Howard, C. J. et al. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife 3, e04126 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  57. Miller, M. L. et al. Linear motif atlas for phosphorylation-dependent signaling. Sci. Signal. 1, ra2 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Creixell, P. et al. Unmasking determinants of specificity in the human kinome. Cell 163, 187–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. T. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl Acad. Sci. USA 103, 17783–17788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kornev, A. P., Taylor, S. S. & Ten Eyck, L. F. A helix scaffold for the assembly of active protein kinases. Proc. Natl Acad. Sci. USA 105, 14377–14382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Creixell, P. et al. Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell 163, 202–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heredia, J. D. et al. Mapping interaction sites on human chemokine receptors by deep mutational scanning. J. Immunol. 200, 3825–3839 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Miles, T. F. et al. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife 7, e35850 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Winget, J. M. & Mayor, T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell 38, 627–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Roscoe, B. P., Thayer, K. M., Zeldovich, K. B., Fushman, D. & Bolon, D. N. A. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 425, 1363–1377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mavor, D. et al. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife 5, e15802 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mavor, D. et al. Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biol. Open 7, bio036103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ernst, A. et al. A strategy for modulation of enzymes in the ubiquitin system. Science 339, 590–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, W. et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell 62, 121–136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Nat. Chem. Biol. 9, 51–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Tang, C., Iwahara, J. & Clore, G. M. Visualization of transient encounter complexes in protein-protein association. Nature 444, 383–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hu, J. et al. Kinase regulation by hydrophobic spine assembly in cancer. Mol. Cell. Biol. 35, 264–276 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Creixell, P. et al. Hierarchical organization endows the kinase domain with regulatory plasticity. Cell Syst. 7, 371–383.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wilson, C. et al. Using ancient protein kinases to unravel a modern cancer drug’s mechanism. Science 347, 882–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seeliger, M. A. et al. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 15, 299–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Dar, A. C., Lopez, M. S. & Shokat, K. M. Small molecule recognition of c-Src via the Imatinib-binding conformation. Chem. Biol. 15, 1015–1022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seeliger, M. A. et al. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res. 69, 2384–2392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pitsawong, W. et al. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife 7, e36656 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Bandaru, P., Kondo, Y. & Kuriyan, J. The interdependent activation of son-of-sevenless and Ras. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a031534 (2018).

    Article  Google Scholar 

  84. Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bandaru, P. et al. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 6, e27810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salinas, V. H. & Ranganathan, R. Coevolution-based inference of amino acid interactions underlying protein function. eLife 7, e34300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pahuja, K. B. et al. Actionable activating oncogenic ERRB2/HER2 transmembrane and juxtamembrane domain mutations. Cancer Cell 34, 792–806.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA 114, 11751–11756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baretić, D. et al. Structures of closed and open conformations of dimeric human ATM. Sci. Adv. 3, e1700933 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bitbol, A.-F., Dwyer, R. S., Colwell, L. J. & Wingreen, N. S. Inferring interaction partners from protein sequences. Proc. Natl Acad. Sci. USA 113, 12180–12185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gueudré, T., Baldassi, C., Zamparo, M., Weigt, M. & Pagnani, A. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc. Natl Acad. Sci. USA 113, 12186–12191 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3, e03430 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  94. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. eLife 3, e02030 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Procaccini, A., Lunt, B., Szurmant, H., Hwa, T. & Weigt, M. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks. PLoS One 6, e19729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coyle, S. M., Flores, J. & Lim, W. A. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell 154, 875–887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Bandaru and R. Ranganathan for insights and stimulating discussions. N.H.S. is a funded by a Damon Runyon–Dale F. Frey Award for Breakthrough Scientists from the Damon Runyon Cancer Research Foundation. J.K. is funded by NIH grant P01 A1091580.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neel H. Shah or John Kuriyan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.H., Kuriyan, J. Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation. Nat Struct Mol Biol 26, 25–34 (2019). https://doi.org/10.1038/s41594-018-0175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0175-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing