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Benchmarking spatial clustering methods 
with spatially resolved transcriptomics data

Zhiyuan Yuan    1,2,7 , Fangyuan Zhao3,4,7, Senlin Lin    3,4, Yu Zhao    5, 
Jianhua Yao    5, Yan Cui1,2,6, Xiao-Yong Zhang    1 & Yi Zhao    3,4 

Spatial clustering, which shares an analogy with single-cell clustering, 
has expanded the scope of tissue physiology studies from cell-centroid 
to structure-centroid with spatially resolved transcriptomics (SRT) data. 
Computational methods have undergone remarkable development in 
recent years, but a comprehensive benchmark study is still lacking. Here we 
present a benchmark study of 13 computational methods on 34 SRT data  
(7 datasets). The performance was evaluated on the basis of accuracy, spatial 
continuity, marker genes detection, scalability, and robustness. We found 
existing methods were complementary in terms of their performance and 
functionality, and we provide guidance for selecting appropriate methods 
for given scenarios. On testing additional 22 challenging datasets, we 
identified challenges in identifying noncontinuous spatial domains and 
limitations of existing methods, highlighting their inadequacies in handling 
recent large-scale tasks. Furthermore, with 145 simulated data, we examined 
the robustness of these methods against four different factors, and assessed 
the impact of pre- and postprocessing approaches. Our study offers a 
comprehensive evaluation of existing spatial clustering methods with SRT 
data, paving the way for future advancements in this rapidly evolving field.

Advancements in spatially resolved transcriptomics (SRT) enable the 
multiplexed spatial mapping of gene expression, allowing researchers to 
move beyond cell clustering to identify higher-order tissue structures, 
or spatial domains, through the provision of additional spatial informa-
tion1–3. Identifying spatial domains by spatial clustering has become a 
standard initial step in constructing spatial atlas4–8 and has proven to be 
crucial in visualizing tissue anatomy9, inferring tissue spatial continu-
ity10,11, detecting domain-specific marker genes12,13, mining spatial signa-
tures of development and disease14,15, and identifying domain-dependent 
molecular regulatory networks16,17 (Supplementary Note 1).

Despite the availability of computational methods based on 
probabilistic graphical models and graph neural networks (GNNs) for 

identifying spatial domains recent years18,19, the lack of consistency and 
comprehensiveness in the datasets and metrics used poses substantial 
challenges. These difficulties arise from the rapid advancements in 
spatial technologies, the limited evaluation metrics used in certain 
applications, and the reliance on datasets obtained from specific tech-
nologies and tissues that have been generated by certain laboratories 
(Supplementary Note 2).

Although benchmarking efforts have been made for spatially 
resolved transcriptomics data, particularly in relation to cell type20, a 
comprehensive benchmark study specifically targeting spatial cluster-
ing methods designed for identifying spatial domains is still needed 
(Extended Data Fig. 1). In this Analysis, we considered ten metrics of 
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Second, we identified limitations within current methods. These 
limitations became apparent during the testing of various spatial 
clustering methods on additional 22 data (Methods and Supplemen-
tary Table 1) containing small and noncontinuous tissue domains, and 
during multislice analysis on another large-scale dataset containing 
31 tissue slices (Methods and Supplementary Table 1). We proposed 
a ‘divide and conquer’ strategy to make the latter challenging task 
effectively solvable.

Lastly, we tested the impact of robustness and other factors. With 
145 simulated data in total, we evaluated the impact of several factors on 
the performance of these methods, including gene expression matrix 
sparsity, spatial resolution, the number of genes and the level of noise 
(Methods). We also tested the impact of pre- and postprocessing steps 
on different methods’ performance.

Overall, this work represents a profound contribution to the field 
of spatially resolved transcriptomics, providing a comprehensive 

four categories (prediction accuracy, spatial domain continuity, the 
ability to detect domain marker genes, and scalability; Methods). For 
the purpose of clarity in this paper, we used ‘accuracy’ in a broader 
sense than its traditional statistical usage, and ‘data’ to refer to spatial 
transcriptomics data from a single slice, while a ‘dataset’ refers to a col-
lection of data from the same publication, sharing the same technology.

Our first step involved a comprehensive analysis of spatial cluster-
ing methods within the context of spatially resolved transcriptomics. 
We benchmarked 13 computational methods across 34 data (7 datasets) 
from various spatial technologies (Fig. 1, Methods and Supplementary 
Table 1). Data were selected on the basis of the variety of data types and 
the availability of annotations. Our study found no ‘one-size-fits-all’ 
method worked well on every data. We provided user guidance for 
selecting the optimal spatial clustering methods based on data charac-
teristics and introduced a website interface (http://sdmbench.drai.cn/)  
for benchmarking new methods against existing ones.
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Fig. 1 | Pipeline and data. a, The pipeline of the benchmark study. b, The datasets 
used in this study. Information such as number of subdatasets, spatial resolution, 
number of spots/cells, number of genes, and gene expression matrix sparsity 
is listed. Note that the lengths of the bars are proportional to mean values, and 

the number beside the bars are median values. Detailed information for the data 
source is presented in Methods. Data are presented on the basis of mean and 95% 
confidence intervals. Number of data are shown in ‘Data number’ column.
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evaluation framework for spatial clustering methods and facilitating 
their application to a wide range of datasets. We anticipate that our find-
ings will be of interest to researchers in the field and have significant 
implications for advancing the development of more effective and 
efficient spatial clustering methods in increasingly complex use cases.

Results
Methods and datasets
To evaluate the performance of various spatial clustering methods  
(Fig. 1a), the primary criterion for dataset selection was the availabil-
ity of spatial domain annotations as ground truth. We also evaluated 
the quality of those annotations (Supplementary Note 3 and Supple-
mentary Figs. 1–3). To this end, various extant spatial transcriptomics 
databases, including STomicsDB21, SpaceTx22, Cellxgene23, SpatialDB24, 
SpatialLIBD25 and SODB26, were extensively examined. This led to the 
acquisition of 34 real data from a variety of spatial technologies, includ-
ing 10x Visium25, Stereo-Seq27, BaristaSeq28, MERFISH29, osmFISH30, 
STARmap31 and STARmap*31 (1k gene version of STARmap) (Methods, 
Fig. 1b and Supplementary Table 1). As these data were produced using 
distinct spatial technologies, they exhibit different data characteristics 
and collectively span a wide range of potential spatial transcriptomics 
data types, which allows users of different spatial technologies to ben-
efit from the study. The reliability of these datasets and their annota-
tions has made them a frequent choice for methods development12,32.

A total of 13 computational methods (Methods), including 11 spa-
tial clustering methods and 2 nonspatial clustering methods, were con-
sidered in this study. The benchmarked spatial methods were mostly 
developed after 2021, representing the most recent advancements. The 
nonspatial methods employed were Louvain33 and Leiden34. The spatial 
methods include SpaGCN12, BayesSpace35, stLearn36, SEDR11, CCST13, 
SCAN-IT37, STAGATE38, SpaceFlow32, conST39, BASS40 and GraphST41. 
Although Louvain and Leiden are both designed for nonspatial 
single-cell data, following previous studies12,35,36, we included them as 
the baseline to illustrate the effect of considering spatial information.

As suggested by previous benchmark studies42, the diversities of 
spatial technologies and computational methods are both necessary 
to achieve the primary goal of this work, which is to guide biologists 
in choosing optimal methods and developers in improving current 
state-of-the-art. Biologists need to know the optimal method for their 
datasets, whether they were generated by existing or new spatial tech-
nologies. Of the existing spatial technologies, 10x Visium and MERFISH, 
which were both involved in this study, occupy a substantial portions of 
published datasets and will probably be more popular due to their com-
mercialization43. For datasets generated by new spatial technologies, 
this benchmark study can also provide useful information by inferring 
the optimal methods on the basis of similarities in data characteristics.

The diverse range of computational methods is also necessary, even 
if some methods are specifically designed for particular spatial technolo-
gies. Many potential users without programming skills may not know or 
care about the underlying principles and designs of each method or the 
statistical nature of data generated from different spatial technologies. 
Therefore, we provide unadorned results of different methods on vari-
ous data types as the most straightforward way to help a wide range of 
potential users and readers. Reporting the multi-aspect performance 
of diverse methods on diverse datasets would also motivate method 
developers to identify important limitations that exist in current meth-
ods on specific datasets. In this study, we identified some limitations 
in current methods and demonstrated how these could be tentatively 
resolved by the combination of our recommended method and existing 
tools. To better contribute to the field, we provided both Python package 
and website for new methods benchmarking (Supplementary Note 4).

Benchmarking analysis on 10x Visium dataset
The benchmarking pipeline (Fig. 1a) is illustrated using the DLPFC 10x 
Visium dataset25 as an example (Fig. 2a,b). This dataset contains 12 

tissue slices from the human dorsolateral prefrontal cortex (DLPFC), 
with each slice containing more than 20,000 genes at a transcriptome 
scale, with a median of 3,844 spots (Methods). Additionally, this data-
set is frequently employed to evaluate almost every spatial clustering 
method. Initially, the performance of spatial clustering on slice#151673 
(Data9) was analyzed by plotting the predicted labels in tissue space 
(Fig. 2a). Most methods exhibited laminar patterns as expected when 
compared to the ground truth (Fig. 2a), particularly BayesSpace, and 
two recent methods, BASS and GraphST.

Clustering accuracy was quantified using normalized mutual 
information (NMI), the most widely used accuracy metric in the field. 
The top-performing methods for slice#151673 (Data9) (Fig. 2a) were 
BASS (NMI 0.71), GraphST (NMI 0.697), and BayesSpace (NMI 0.688). 
When the performance was aggregated across all 12 slices, a highly con-
sistent top method was observed (Fig. 2b), with GraphST (median NMI 
0.621) and BASS (median NMI 0.612) being the most accurate, followed 
by SCAN-IT (median NMI 0.599) and BayesSpace (median NMI 0.598) 
with similar accuracies. As expected, Leiden (median NMI 0.246) and 
Louvain (median NMI 0.240) exhibited the least performance since 
they did not incorporate spatial information and were often used as 
baseline methods by spatial clustering papers to demonstrate the 
benefits of using spatial information.

To provide more comprehensive evaluations, other metrics were 
utilized (Methods). For accuracy, the homogeneity score (HOM)44 was 
incorporated, which incentivizes methods that generate subdomains 
within the ground truth domains. The completeness score (COM)44 was 
also used, which encourages methods that produce larger domains 
that encompass several true domains. Continuity is another impor-
tant measure for spatial clustering as it encourages predicted labels 
to exhibit spatial coherence and clear domain-domain interfaces. 
To assess continuity of predicted spatial domains, three widely used 
metrics were employed, namely CHAOS45, percentage of abnormal 
spots (PAS)45 and average silhouette width (ASW)46. Identification of 
domain-specific marker genes is a crucial biological application, and 
the ability of each method to identify high-quality domain-specific 
marker genes was further evaluated. Spatial autocorrelation is the most 
widely accepted metric for evaluating the quality of domain-specific 
marker genes12, and Moran’s I (ref. 47) and Geary’s C (ref. 48) (Methods) 
were computed and averaged across top marker genes of each method 
to report the performance.

Although NMI is the most important metric as demonstrated 
in previous studies12,32,35, other metrics can reflect complementary 
aspects of method performance and are valuable for users’ reference. 
When selecting a method, users can jointly consider multiple metrics 
based on their specific needs. For example, if finer tissue structures 
are required, methods with higher HOM, such as SpaceFlow, might 
be preferred (Fig. 2b). However, SpaceFlow’s low NMI and tail-ranked 
marker score may make it a suboptimal choice for 10x Visium datasets 
(SpaceFlow’s strength is mainly in imaging-based spatial datasets, 
see next sections). For another example, if smoother boundaries 
are needed, BASS, with a better continuity score, may be the better 
choice, even though BASS and GraphST exhibit similarly good NMI 
scores (Fig. 2b).

Benchmarking analysis on MERFISH dataset
MERFISH is a highly utilized imaging-based spatially resolved transcrip-
tomics (SRT)7,29,49 technology, and its potential future applications may 
become more widespread due to commercialization. We analyzed a 
MERFISH dataset of the mouse hypothalamic preoptic region50, which 
contains five annotated slices with a median of 5,557 cells (Fig. 1b and 
Methods). This prediction is particularly challenging given the com-
plex tissue structure and domains with heterogeneous shapes and 
adjacency (Fig. 2c). Three available methods in the 10x Visium dataset, 
that is, SpaGCN (HE), BayesSpace and stLearn, were not applicable to 
this dataset (Methods).

http://www.nature.com/naturemethods
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Fig. 2 | Evaluation on 10x Visium and MERFISH. a, The ground truth and 
methods’ output on a representative slice of 10x Visium dataset. b, Quantitative 
evaluations were recorded on all 12 data of 10x Visium. On each data, each 
method was repeated for ten times. For each metric, the compared methods 
are arranged in order from the best performance to worst. Center line: median; 
box limits: upper and lower quartiles; whiskers: 1.5× interquartile range. 
N = 10 independent runs for 12 data. c, The ground truth and methods’ output 
on a representative slice of MERFISH dataset. BST, bed nuclei of the strata 

terminalis; V3, third ventricle; PV, periventricular hypothalamic nucleus; 
PVT, paraventricular nucleus of the thalamus; MPN, medial preoptic nucleus; 
fx, columns of the fornix; PVH, paraventricular hypothalamic nucleus; MPA, 
medial preoptic area. d, Quantitative evaluation was recorded on all five data 
of MERFISH. On each data, each method was repeated for ten times. For each 
metric, the compared methods are arranged in order from the best performance 
to worst. Center line: median; box limits: upper and lower quartiles; whiskers: 
1.5× interquartile range. N = 10 independent runs for five data.
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Quantitative metrics of all available methods on the MERFISH 
dataset (Fig. 2d) revealed significant differences compared to their 
performance on the 10x Visium dataset (Fig. 2b). The best-performing 
method, GraphST, in the 10x Visium dataset (ranked 1 in NMI) did not 
rank as the top method in the MERFISH dataset (ranked 5 in NMI). The 
continuity of CCST was the top among the 11 methods for MERFISH, and 
the accuracy of CCST for the MERFISH dataset improved, particularly 
in NMI, compared to that for the 10x Visium dataset, indicating that 
CCST was better suited for imaging-based datasets (Fig. 2d). BASS, 
SpaceFlow and SCAN-IT were the methods that could best capture 
domain-specific marker genes and had both top accuracy and continu-
ity, making them the recommended methods to choose for MERFISH 
data (Fig. 2d). We also analyzed the performance variance in the 10x 
Visium and MERFISH dataset (Supplementary Note 5). Benchmarking 
analyses on other spatial data types are also available (Supplementary 
Figs. 4–8 and Supplementary Note 6).

Overall performance
Through the analysis of methods performance across different data, 
we have observed interesting correlation patterns as determined by 
the Spearman correlation coefficient, underlining the relative ordering 
of their performance (Fig. 3a, the underlying metrics values can be 
found in Extended Data Fig. 2). First, we found that, within the same 
spatial technology, a strong Spearman correlation emerged when mul-
tiple data samples originated from the same individual and shared 
identical tissue structure. A notable example of this is the high consist-
ency in the relative performance of all methods applied on three 
BaristaSeq datasets (Fig. 3a, blue box). Second, when tissue structure 
is controlled, methods performance may be influenced by the use of 
different technologies. Evidence for this is seen when comparing the 
performance of methods on the 10x Visium dataset with that of the 
BaristaSeq dataset. Sharing similar tissue structures (brain cortex 
region, Supplementary Table 1), the two datasets, generated by differ-
ent spatial technologies, yielded different performance outcomes 
(Spearman’s correlation is 0.33, Fig. 3b). Third, when spatial technology 
is controlled, the origin of the data samples (that is, different donors) 
can also influence method performance. An example is on the 10x 
Visium dataset, the significantly higher correlations (Supplementary 
Fig. 9, P = 4.65 × 10−4) when applying methods on data from the same 
donor than from the different donors (correlation values from the 
same donor are highlighted in red box in Fig. 3a).

Based on the correlated performance of methods across spatial 
technologies, we have summarized the performance of all methods by 
partitioning the datasets into two groups. The first group comprises 
datasets generated by 10x Visium, and the second group comprises 
datasets generated by imaging-based datasets (MERFISH, osmFISH, 
BaristaSeq, STARmap and STARmap*). The performances displayed 
(Fig. 4 and Supplementary Fig. 10) were based on a rank-based score 
(Methods), as done in previous benchmark analyses42, so higher scores 
are better. Users can easily derive their recommendations on the basis 
of their circumstances.

The overall evaluation demonstrated the complementary nature 
of all methods in terms of their performance and functionality. BASS 
and SCAN-IT displayed top performance in both groups of datasets 
(Fig. 4a,b), indicating the best generalizability, although their scal-
ability was relatively lower than that of other methods. Users may want 
to choose more efficient methods, such as STAGATE, conST or SEDR, 
if some compromise in prediction accuracy is acceptable. STAGATE 
achieved the top scalability score in all cases, but could not achieve top 
accuracy. Some methods exhibited technology-biased performance. 
For example, BayesSpace performed particularly well on 10x Visium 
dataset, but cannot be applied to imaging-based datasets and has a 
longer running time. For imaging-based datasets (Fig. 4b), SpaceFlow 
and CCST generated both good accuracy and top scalability, while 
their accuracy ranking was not at the top in the 10x Visium dataset. We 

have provided user guidance for choosing methods in Extended Data  
Fig. 3. Note that the criterion is based on accuracy. If other aspects 
should be considered, users can refer to Fig. 4 for more comprehensive 
recommendations. All the benchmarking results are available at http://
sdmbench.drai.cn/ (Supplementary Figs. 11–13).

One can observe a major proportion of Python methods compared 
to R (Fig. 4a,b). The Python methods are mostly based on the deep 
learning approach, which has benefited from the advancement of the 
deep learning ecosystem, such as PyTorch (https://pytorch.org/) and 
PyG (https://www.pyg.org/). Most deep learning methods can generate 
a ‘context-aware representation’ which is a type of cellular representa-
tion that encodes both the gene expression and spatial information, 
along with the spatial domain labels. This context-aware representa-
tion of cells can be freely incorporated with existing single-cell tools 
for spatially related tasks. For example, the pseudo-spatiotemporal 
can be obtained by applying trajectory-based single-cell methods on 
the learned context-aware representation to unravel spatiotemporal 
patterns of cells32.

Limitations of current methods
We identified some limitations of current methods, including limita-
tions in identifying smaller and noncontinuous domains, limitations in 
multislice analysis on large-scale dataset, and gave examples to dem-
onstrate the inadequacies of existing methods on a large-scale dataset.

Limitations in identifying smaller and noncontinuous domains. 
Current spatial clustering methods incorporating spatial information 
often results in a preference for continuous results. However, there have 
been limited investigations into the performance of these methods 
when applied on data that violate the underlying assumptions of spatial 
domain continuity. To cover this, we collected an additional 22 data 
from nonbrain tissues with smaller, noncontinuous tissue domains, 
including breast cancer51, liver52 and pancreatic ductal adenocarci-
noma53 (Methods and Supplementary Table 1). With comprehensive 
analysis (Supplementary Note 7, Extended Data Fig. 4 and Supplemen-
tary Figs. 14–35), we found that all methods encounter challenges when 
faced with smaller, noncontinuous tissue domains.

Limitations in multislice analysis on large-scale dataset. A grow-
ing number of spatial single-cell studies generated spatial data from 
multiple slices7,49,54, to construct a large-scale spatial atlas. This research 
trend necessitates methods that can identify the tissue structures from 
multiple slices jointly. To cover the multislice and scalability limita-
tions of most current methods, we used a simulated data to show the 
different types of problems that may occur (Supplementary Note 8 
and Supplementary Fig. 36). In addition, we used a recently published 
large-scale MERFISH dataset containing 378,918 cells from 31 slices, 
with 374 genes measured55, to show that all methods encountered time 
and/or memory issues when applied to the dataset (Supplementary 
Note 9 and Extended Data Fig. 5).

A divide and conquer strategy enables large-scale scalability
Supplementary Notes 8 and 9 highlighted the inadequacies of existing 
methods to handle large-scale spatial datasets (Extended Data Fig. 5). 
Instead of developing new methods to address this, adjusting or com-
bining existing methods may prove to be a more efficient approach. 
To this end, a divide and conquer strategy was designed to partition 
the complex task into smaller subtasks that can be solved by existing 
methods, followed by merging the subresults. A strong base solver is 
required to solve each subtask. Based on our previous recommenda-
tions and data characteristics, SpaceFlow was identified to be the most 
suitable, given its performance on accuracy, scalability on single-slice 
small data (especially with imaging-based spatial technologies), and 
ability to output context-aware representation (Fig. 4). Further details 
on this divide and conquer strategy can be found in Methods.
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The proposed approach, termed SpaceFlow-DC (SpaceFlow Divide 
and Conquer), was applied to multislice spatial clustering on a large-scale 
dataset (Extended Data Fig. 5a). Initially, SpaceFlow was applied to each 
of the 31 slices, respectively, generating a set of context-aware embed-
dings for each slice (Divide step). As these embeddings were indepen-
dently trained by graph neural networks, the embeddings and annotation 
labels were not aligned and exhibited substantial batch effect (Fig. 5a). To 
address this, Harmony56 was applied to integrate all the embeddings of 
the 31 slices (Merge step), producing aligned joint embeddings and spa-
tial clustering results (Fig. 5b). As seen from the cortical layer orders from 
outermost layer (pia mater) to innermost (corpus callosum), the spatial 
map of ground truth labels and SpaceFlow-DC-predicted labels exhibited 
cross-slice-consistent and nicely aligned results (see the consistent color 
code across slices in Fig. 5c,e). In contrast, the original SpaceFlow exhib-
ited mismatched domain labels across slices (Fig. 5d). This mismatching 
problem is the common issue when applying single-slice spatial cluster-
ing methods on multiple slices.

Quantitative evaluation of the original SpaceFlow and three 
versions of SpaceFlow-DC (including SpaceFlow-DC-Louvain, 
SpaceFlow-DC-Leiden and SpaceFlow-DC-mclust; Methods) was con-
ducted to assess spatial clustering accuracy. The approximately equal 
per-slice accuracy demonstrated that the proposed strategy did not 
compromise the prediction in every single slice (Fig. 5f). The substan-
tially improved all-slice accuracy indicated that the approach generated 
accurate and well-aligned spatial domains across all slices (Fig. 5g). The 
performance of the three versions of SpaceFlow-DC indicated that the 
clustering methods applied on the context-aware representations did 
not impact performance and also provided guidance for user’s choice. 
Running times for the three versions of SpaceFlow-DC were recorded 
as a function of the number of slices (Fig. 5h and Supplementary  
Fig. 37), indicating that the proposed strategy could handle all cases, with 
linear time complexity against the data volume, in contrast to all single 
methods that encountered issues (Extended Data Fig. 5c). Note that 
all experiments share common computational resources (Methods).
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Fig. 3 | Correlations between data regarding methods performance. a, On 
the heatmap, the entry of row i and column j is computed by the Spearman’s 
correlation of two vectors. One is formed by the median NMI of all methods 
applied on data i, another is that on data j (Methods). The black dashed box 
was the correlations between data from 10x Visium. The green dashed box was 
the correlations between data from imaging-based SRT. The blue dashed box 

pointed by blue arrow was the correlations between data of BaristaSeq. In the 10x 
Visium dataset, data were collected from three donors, and the red dashed box 
was the correlations between data from the same donor. b, Similar to a, but the 
correlations are between biotechnologies, rather than data. The green dashed 
box was the correlations between technologies from imaging-based SRT.
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Overall, the analysis underscores the usefulness of this benchmark 
study, demonstrating that the output of this benchmark study can moti-
vate developers to combine existing bioinformatics tools to effectively 
address the originally impossible mission. The proposed divide and con-
quer strategy provides a strong solution for the ever-increasing amount 
of large-scale datasets from a bunch of slices (Extended Data Fig. 5b).

Impact of pre- and postprocessing and robustness
We evaluated the impact of different preprocessing and postprocess-
ing approaches and robustness against different data characteristics 
(Fig. 6).

In the context of spatial clustering with spatial transcriptomics 
data, various preprocessing and postprocessing methods may impact 
the prediction results. However, current methods use inconsistent pre- 
and postprocessing steps, leading to unclear and uncontrolled perfor-
mance. For preprocessing, we considered highly variable gene (HVG) 
selection, spatially variable genes (SVG) selection and no selection. 
For postprocessing, we considered refinement (K-nearest neighbors 
(KNN)-based method to refine the identified spatial domain labels to 
smooth them in space, proposed by SpaGCN12), and no refinement. 
These inconsistent pre- and postprocessing steps outside the main 
body of spatial clustering methods motivated us to assess the effects 
of pre- and postprocessing approaches on the performance for dif-
ferent methods across datasets. Through a comprehensive analysis  
(Fig. 6a–d, Supplementary Note 10 and Supplementary Figs. 38–41) of 
the preprocessing steps, we found that approximately half of the tested 
methods achieved better performance without any gene selection. 

While regarding the postprocessing step, all methods benefit from a 
post hoc spatial smoothing step.

One can also encounter a variety of spatial transcriptomics data 
with different characteristics in their studies, therefore simulating new 
data with variable parameters might be useful for a wider reference. 
Considering three important properties of the spatial transcriptom-
ics dataset, we simulated data with different gene expression matrix 
sparsity, spatial resolutions and gene numbers (Methods). In addition, 
we also tested the robustness of spatial clustering methods against add-
ing noise (Methods). We analyzed the robustness of different methods 
against these factors (Fig. 6e, Supplementary Note 11 and Supplemen-
tary Figs. 42–51). Regarding the impact of gene expression matrix 
sparsity, for most methods, the performance reduced with increasing 
expression matrix sparsity, except CCST, Louvain and Leiden. Regard-
ing the impact of spatial resolution, most methods’ performance slowly 
increased as the resolution became lower, except Louvain, Leiden, 
SCAN-IT and SpaceFlow. Regarding the impact of gene subsampling, 
most methods displayed higher performance with larger number of 
genes. Regarding the impact of adding noise, we identified a consistent 
robustness across spatial clustering methods.

Discussion
In this study, we conducted a benchmark analysis of 13 methods for iden-
tifying spatial domains using spatial transcriptomics data from various 
spatial technologies. We evaluated these methods on the basis of accu-
racy, continuity, marker score and scalability, providing a comprehensive 
framework for spatial clustering evaluation that can assist researchers 
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it can output the context-aware representation), NMI, HOM, COM, CHAOS, 
ASW, PAS, Moran’s I, Geary’s C, running time and peak memory. These metrics 

are displayed using rank-based scores (Methods). The applied datasets are 
partitioned into two groups, that is, 10x Visium (a) and imaging-based (b). Data 
are presented on the basis of mean and 95% confidence intervals. N = 12 data for 
10x Visium and N = 22 for imaging-based technologies.
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in selecting the optimal spatial clustering tool for their spatial transcrip-
tomics data. Our results indicate that no single method is universally 
effective across all datasets, and the optimal method is dependent on 
data characteristics. Our comparative analysis identified several limita-
tions of current methods, including the challenges in identifying small 

regions, the lack of multislice analysis capability and large-scale scalability 
issues. With increasing requirements for memory and computation time 
of spatial transcriptomics data, greater scalability is desirable to meet 
these demands. Regarding some identified limitations, we proposed a 
‘divide and conquer’ approach to demonstrate that our benchmark study 
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Fig. 5 | The large-scale datasets are solved by proposed approach. The dataset 
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truth annotation (left) and slice ID (right). b, The visualization is generated by 
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can motivate method bioinformaticians to combine existing tools to 
effectively address the challenges posed by large-scale spatial datasets.

We also focused on the incorporation of additional staining images 
such as hematoxylin and eosin (H&E). In line with ensuring a fair com-
parison, we included both versions of SpaGCN—with and without H&E 
staining—in our benchmarking process. Interestingly, our analysis, cor-
roborated by findings from other studies, indicates that the addition of 
H&E staining images does not consistently enhance the performance 
of SpaGCN. It appears that H&E images might contain certain informa-
tion that does not directly aid in the improved identification of tissue 
structures. These data may inadvertently introduce extraneous noise, 
thus influencing the overall performance. Another possible explana-
tion for these findings could be related to the way how H&E images were 
modeled. There might be room for further refinement to optimally 
exploit the additional data that H&E staining provides.

There are some limitations of this study. First, the fast-paced 
nature of advancements in the spatial transcriptomics field and the 
limited ground truth annotations have led to the exclusion of numer-
ous emerging data types from our study. Second, our study predomi-
nantly concentrated on spatial clustering methods applied to spatially 
resolved transcriptomics data. This focus inadvertently neglected the 
incorporation of other cutting-edge spatial data, such as spatial prot-
eomics and spatial multiomics data, which could potentially provide 
complementary insights. To address these limitations, future studies 
should actively strive to encompass more extensive array of spatial 
data types and spatial computational methods. Given the similar data 
formats across various spatial data types, we anticipate that upcoming 
studies will evaluate more comprehensive computational methods 
across a wider spectrum of spatial data.

This study can also inspire thoughts for designing future bench-
mark studies, and the following points might be considered. Regard-
ing metrics, the key measure should be the similarity between the 
method’s prediction and the ground truth. In our manuscript, for 
example, we used NMI, HOM and COM to evaluate this similarity. If 
designing a benchmark for detecting SVGs, for example, metrics such 
as precision, recall or F-measure would be appropriate as they evalu-
ate the agreement between the detected gene set and the truly SVG 
set. Additional metrics that reflect some properties of the prediction, 
independent of ground truth, can also be helpful. In our manuscript, 
metrics like CHAOS, PAS and ASW measure the spatial continuity of 
the predicted domains. This principle of high spatial continuity is 
inherent in tissue biology; however, it may not always indicate a good 
prediction. For example, assigning an identical label to all cells would 
result in the highest spatial continuity. Hence, such metrics should 
be used to supplement the primary similarity-based metrics. For SVG 
benchmarking, classification accuracy (to predict spatial domains) 
using detected SVGs as features is another side measure of quality SVG 
prediction12, but remember that some SVGs may not correspond to 
spatial domains. Scalability measures such as running time and peak 
memory usage are also important. These metrics are frequently used 
in benchmark studies across various computational tasks, including 
single-cell data integration57, spatial transcriptomics data imputation 
or deconvolution42, and trajectory inference58. Regarding dataset 
selection, the availability of reliable ‘ground truth’ is the first consid-
eration since performance evaluation depends on comparing method 
predictions with this ground truth. This was our primary criterion 
in our study. However, for tasks like SVG identification that lack real 
datasets with well-established ground truth, simulated data can be used 
as a substitute until real datasets with reliable ground truth become 
available. The diversity of datasets should also be considered. Given 
the varying data-generation protocols across biotechnologies and the 
ever-evolving landscape of these technologies43, it is advantageous 
to cover a broad range of data types in the benchmark study. This was 
another major consideration in our study design. Lastly, the choice of 
metrics and datasets should consider the extent of their recognition 

in the field. While not all selected metrics or datasets need to be widely 
used, a substantial portion should be familiar to the research commu-
nity. This is beneficial when comparing the new benchmark study with 
existing benchmarks presented in published method papers.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Settings of benchmarked methods
Each evaluation in our study involved ten replicated runs of each 
method. To show our general criteria for parameter choice, we have 
detailed our process in three categories:

Parameters determining number of spatial domains. For the param-
eters that directly influence the number of spatial domains in our 
clustering results, we adopted two approaches based on the capabili-
ties of the methods. (1) For algorithms where we could directly input 
the expected number of spatial domains (for example, SpaGCN and 
BayesSpace), we set the parameter to the actual number of domains 
obtained from our ground truth. (2) For those algorithms that could 
only accept clustering resolution, we searched the resolution that best 
matches the expected number of spatial domains.

Data-related parameters. This category is related to parameters 
influenced by the spatial organization and feature dimensions of dif-
ferent datasets. For these parameters, we adopted a parameter search 
strategy. Such parameters are involved in almost every method, such 
as the number of neighbors when constructing the spatial graph, and 
the number of principal components (n_pcs) when processing the 
feature space. When setting the search ranges, we consider covering 
all the default values of all methods. For example, across all methods 
that have n_pcs as parameter, the max default value of n_pcs is 200 
(CCST), and the min default value of n_pcs is 15 (BayesSpace), so we 
set the searching range of n_pcs to 15–200 (step 5).

Network-related parameters. This last category of parameters 
includes those controlling the network layers, the number of neurons 
in hidden layers, and the training stopping criteria. For these param-
eters, we adhered to the original authors’ recommended settings.

In the following, we explained the basic principles of different 
methods. Full parameter descriptions, choice principle and search 
ranges are available at Supplementary Table 3.

Louvain. Louvain33 is a nonspatial clustering algorithm that allocates each 
spot to a distinct community and optimizes modularity by iteratively 
merging and splitting communities until the desired clustering results are 
achieved. We followed the guidelines outlined on the SCANPY website59.

Leiden. Leiden33,34 is another nonspatial clustering algorithm that is 
similar to Louvain but can also merge similar communities to enhance 
clustering results further. We followed the guidelines outlined on the 
SCANPY website60. The relationships between Louvain and Leiden are 
explained in Supplementary Note 12.

SpaGCN. SpaGCN12 is a spatial clustering method that utilizes graph 
convolutional networks (GCNs) to integrate gene expression, spatial 
location and histological information to cluster spots into different 
spatial domains using unsupervised iterative clustering. This version 
of SpaGCN is for data without H&E images.

SpaGCN(HE). SpaGCN(HE)12 is a spatial clustering method that 
employs GCNs to integrate gene expression, spatial location and histo-
logical information for unsupervised iterative clustering. This method 
utilizes an undirected weighted graph to determine the Euclidean 
distance between spots in the graph on the basis of their spatial coor-
dinates (x, y) and the three-dimensional coordinate z, obtained from 
the RGB values in the histological image. This version of SpaGCN is for 
data with H&E images.

BayesSpace. BayesSpace35 is a full Bayesian statistical method that 
incorporates a low-dimensional representation of the gene expression 
matrix to model spatial clustering, encouraging neighboring points to 

belong to the same cluster through a spatial prior. This method requires 
spatial data in the form of spot locations, so it is not suitable for data 
that do not use ‘spot’.

StLearn. stLearn36 utilizes spatial morphological gene expression 
(SME)-normalized data to perform unsupervised clustering by group-
ing similar points into clusters. It also utilizes the spatial information 
of these clusters to identify subclasses within the organization. This 
method requires histological information (for example, H&E images) 
as input and thus cannot be used on data lacking such information.

SEDR. SEDR11 is an unsupervised spatial clustering algorithm that 
utilizes a deep autoencoder to construct a low-dimensional latent 
representation of gene expression data. This representation is then 
integrated with the corresponding spatial information using a vari-
ational graph autoencoder, allowing for simultaneous spatial embed-
ding during the clustering process.

CCST. CCST13 is a spatial clustering method that encodes cell location 
and gene expression information into an adjacency matrix and gene 
expression matrix. These two matrices are then input into a Deep 
Graph Infomax network to obtain cell node embeddings containing 
spatial and gene expression information. The embeddings are then 
downscaled by principal component analysis (PCA) and clustered using 
the k-means++ algorithm.

SCAN-IT. SCAN-IT37 is a method that utilizes an image segmentation 
approach to solve the spatial clustering problem. It treats cells as pixels 
in an image and represents gene expressions within cells as different 
channels similar to RGB channels. It constructs a geometry-aware spa-
tial proximity graph using alpha complex, generates low-dimensional 
embeddings of the spots through the application of Deep Graph Info-
max, and uses common clustering algorithms to obtain clustering 
results based on the resulting low-dimensional representations. The 
step with the SOMDE61 algorithm prolongs the overall actual running 
time of SCAN-IT.

STAGATE. STAGATE38 is a spatial clustering method that transforms 
spatial location information into a spatial neighbor network and uti-
lizes gene expression information and the network to train a graph 
attentional self-coding neural network. This network generates 
low-dimensional latent embeddings that integrate spatial and expres-
sion information. These embeddings can then be used for clustering.

SpaceFlow. The SpaceFlow32 method utilizes deep GNNs to merge 
gene expression similarity and spatial information, generating spatially 
consistent low-dimensional embeddings through spatial regulariza-
tion. These embeddings can then be used for clustering.

conST. conST39 is a spatial clustering method that uses contrastive 
learning to integrate multiple modalities of SRT data, including gene 
expression, spatial information and morphology. The method applies 
data augmentation and learns low-dimensional embeddings by min-
imizing or maximizing the mutual information between different 
embeddings using three levels of comparison learning. These embed-
dings can then be used for clustering.

BASS. BASS40 is a spatial clustering method that facilitates multiscale 
and multisample analysis of spatial transcriptomics data. It utilizes 
a Bayesian hierarchical modeling framework to perform clustering 
analysis.

GraphST. GraphST41 is a method that utilizes a graph self-supervised 
comparative learning model for spatial clustering. It integrates GNNs 
and self-supervised comparative learning to effectively learn spot 
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representations in spatial transcriptomics data by modeling both gene 
expression and spatial localization information. These embeddings 
can then be used for clustering.

Impact of preprocessing approaches
We employed the 10x Visium dataset to investigate the impact of three 
gene selection methods, namely HVGs, SVGs and no processing (None). 
For HVG, we utilized the ‘highly_variable_genes’ function from the 
SCANPY package to identify the top 3,000 HVGs. For SVGs, we used 
the SPARK62 algorithm63 to extract the first 3,000 SVGs.

Impact of postprocessing approaches
We used the KNN-based refinement approach as implemented SpaGCN 
package to postprocess all the results of identified spatial domain 
across all datasets12. We then compared the effects of applying the 
postprocessing method versus not applying it. To achieve this, we 
calculated the adjacency matrix of the original spatial transcriptomics 
data and applied the spg.refine() function available in SpaGCN package 
for postprocessing. We then explored the impact of this postprocess-
ing on our results.

Real datasets
Across the manuscript, when referring a spatial transcriptomics data 
of a single slice, we call it ‘data’, and when referring a collection of data 
from the same publication and sharing the same technology, we call it 
‘dataset’. The real data are sequentially labeled, ranging from Data1 to 
Data56. These data also have their original names in their respective 
source publications. A map pertaining to these original names can 
be found in Supplementary Table 1. Note that Data35 to Data56 were 
used for testing methods when the spatial continuity assumption was 
violated. Data57 to Data87 were used for testing methods on large-scale 
multislice dataset.

Data1 to Data12. The 10x Visium dataset (also known as SpatialLIBD 
or DLPFC) is the most widely used benchmark dataset among spatial 
clustering methods25. This dataset contains 12 data of human postmor-
tem DLPFC tissue sections, from three independent neurotypical adult 
donors, all profiled using 10x Visium with paired H&E images. Like other 
10x Visium datasets, each measurement unit is a spot. The number 
of barcoded array spots for the 12 samples are 4,226 (Data1), 4,384 
(Data2), 4,789 (Data3), 4,634 (Data4), 3,661 (Data5), 3,498 (Data6), 4,110 
(Data7), 4,015 (Data8), 3,639 (Data9), 3,673 (Data10), 3,592 (Data11) and 
3,460 (Data12). The number of unique genes is 33,538. This dataset was 
downloaded from ref. 64, containing H&E images of different resolu-
tions for each data, as well as spot-wise region annotation. The region 
annotation ranges from layer 1 to layer 6, and white matter.

Data13 to Data21. The Stereo-Seq dataset is obtained by 
high-resolution full-transcriptome coverage technologies (Stereo-Seq 
technology)27. This dataset contains nine data obtained from differ-
ent samples of mouse embryo. The numbers of spots for the nine 
data are 5,913 (Data13), 5,292 (Data14), 4,356 (Data15), 5,059 (Data16), 
5,797 (Data17), 18,408 (Data18), 18,647 (Data19), 18,670 (Data20) and 
8,494 (Data21). The number of genes for the nine samples are 25,568 
(Data13), 23,756 (Data14), 24,107 (Data15), 24,238 (Data16), 23,398 
(Data17), 25,201 (Data18), 25,544 (Data19), 25,647 (Data20) and 22,385 
(Data21). This dataset was downloaded from ref. 65, along with the 
region annotations.

Data22 to Data24. The BaristaSeq dataset is an imaging-based spatial 
transcriptomics dataset obtained by BaristaSeq technology28. This 
dataset contains three data from mouse primary cortex. The numbers 
of cells for the three samples are 1,525 (sample Slice_1), 2,042 (sample 
Slice_2) and 1,690 (sample Slice_3). The number of unique genes is 79. 
This dataset was downloaded from ref. 66 (ref. 22).

Data25 to Data29. The MERFISH dataset is an imaging-based spatial 
transcriptomics dataset published in 201850. Among all slices, five 
slices were annotated with region labels40. The numbers of cells are 
5,488 (Data25), 5,557 (Data26), 5,926 (Data27), 5,803 (Data28) and 
5,543 (Data29). The number of unique genes is 155. This dataset was 
downloaded from ref. 67.

Data30. The osmFISH dataset is an imaging-based spatial transcrip-
tomics dataset published in 2018 (ref. 30). This dataset contains one 
data from mouse somatosensory cortex, published with the paper 
presenting osmFISH technology. The number of cells is 4,839. The 
number of unique genes is 33, selected from published single-cell 
RNA-sequencing datasets of mouse somatosensory cortex. We down-
loaded the dataset from ref. 68.

Data31 to Data33. STARmap is an imaging-based spatial transcriptom-
ics dataset published with the paper presenting STARmap technology31. 
This dataset contains three data from mouse medial prefrontal cortex, 
with expert annotations of layers40. The numbers of cells are 1,049 
(Data31), 1,053 (Data32) and 1,088 (Data33). The number of unique 
genes is 166. This dataset was downloaded from ref. 69.

Data34. STARmap* is a version of the STARmap measuring 1,020 genes. 
This dataset contains one data from mouse visual cortex with layer 
annotations, which was downloaded from ref. 69.

Data35 to Data41. This dataset is HER2-positive breast tumors using 
spatial transcriptomics technology. This dataset contains seven 
data. The number of spots for the seven samples is 341 (Data35), 269 
(Data36), 167 (Data37), 255 (Data38), 534 (Data39), 659 (Data40) and 
530 (Data41). The number of genes for the seven samples is 15,045 
(Data35), 15,109 (Data35), 15,557 (Data35), 15,661 (Data35), 15,701 
(Data35), 14,861 (Data35) and 15,029 (Data35). This dataset was down-
loaded from ref. 70 (ref. 51).

Data42 to Data54. This dataset is from liver tissues using 10x Visium 
technology. This dataset contains 13 data, 8 of which are mouse liver 
(Data42 to Data49) and 5 are human liver (Data50 to Data54). The 
number of spots for the 13 data is 1,293 (Data42), 1,363 (Data43), 1,316 
(Data44), 1,790 (Data45), 1,121 (Data46), 2,002 (Data47), 1,780 (Data48), 
1,768 (Data49), 626 (Data50), 371 (Data51), 1,759 (Data52), 658 (Data53) 
and 919 (Data54). The number of unique genes for mouse samples is 
31,053, and the number of unique genes for human samples is 32,738. 
This dataset was downloaded from https://www.livercellatlas.org/ 
(ref. 52).

Data55 to Data56. This dataset is from human pancreatic ductal ade-
nocarcinomas using spatial transcriptomics technology. This dataset 
contains two data. The number of spots for the two data is 428 (Data55) 
and 224 (Data56). The number of unique genes is 19,738. The data are 
available at GSE111672 (ref. 53).

Data57 to Data87. This dataset is from mouse aging MERFISH dataset 
containing 31 data. This dataset is for testing the current methods on 
large-scale dataset containing a high number of slices. The informa-
tion is available at Extended Data Fig. 5a. The dataset was downloaded 
from ref. 71 (ref. 55).

Simulated data
Varying spatial resolutions. We used osmFISH dataset30 to assess 
the influence of different spatial resolutions on each method’s per-
formance. To exclusively examine the impact of spatial resolution, we 
maintained other data parameters constant. Our approach involved 
defining a square grid with n-um windows (n = 50, 55, 60, 65, 70, 75, 
80, 85, 90, 95) to partition the osmFISH data. To prevent extremely low 

http://www.nature.com/naturemethods
https://www.livercellatlas.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672


Nature Methods

Analysis https://doi.org/10.1038/s41592-024-02215-8

gene expression values in certain spots, we excluded spots containing 
one cell or fewer, resulting in multiple cells simulating each spot. The 
position of each spot was determined as the center of its corresponding 
grid, and we simulated the spot’s counts by summing the expression 
values of all cells within the grid. The ground truth for each spot was 
determined using the majority voting approach.

Varying expression matrix sparsity. To investigate the impact of 
gene expression matrix sparsity, we assessed the performance of each 
method using the 10x Visium dataset. We randomly removed count 
values at different rates (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9). For 
instance, when the rate is set to 0.9, it implies that each value in the gene 
expression matrix has a 0.9 probability of being set to 0. Conversely, a 
rate of 0 means that the gene expression matrix remains unchanged.

Varying gene subsampling rate. We performed gene subsampling 
on data acquired from diverse spatial transcriptomics technologies 
(10x Visium, BaristaSeq, MERFISH, STARmap and STARmap*). Our 
analysis excluded the osmFISH dataset, as it only contained 33 genes. 
To generate the different gene subsampled datasets, we applied a 
range of subsampling rates (10%, 30%, 50%, 70% and 90%). The desired 
number of genes for each dataset was obtained by multiplying the total 
number of genes in the original data by the subsampling rate. Then, we 
randomly selected (without replacement) genes from the dataset on 
the basis of the calculated gene count.

Adding various levels of noise. We explore the impact of different 
levels of noise on the performance for each method. We performed 
on osmFISH dataset. To generate varying levels of noise (10%, 30%, 
50%, 70% and 90%), we utilized a Poisson distribution with the mean 
parameter set as the product of the noise level and the mean gene 
expression level.

Benchmark metrics
In our study, we used the following metrics to assess each method.

NMI. NMI quantifies the similarity between two clusterings, and ranges 
from 0 to 1. The closer the NMI is to 1, the better agreement between 
two clustering assignments. NMI has been widely used in single-cell 
clustering accuracy evaluation72–74 and was also used to assess the 
performance of spatial domain identification algorithms46. We use NMI 
to assess the agreement between the ground truth domain label and 
tissue structure identification result computed by each method. Sup-
pose P is the spatial domain clustering result, T is the ground truth 
clustering label, their entropies are H(P) and H(T ), respectively, and the 
mutual information is MI(P,T ), then NMI is computed as

NMI = MI(P,T )
√H(P)H(T )

.

ARI. The adjusted Rand index (ARI) is a measure of similarity between 
two clusterings that takes into account the possibility of chance agree-
ment between the two clusters. It is commonly used to evaluate the 
performance of clustering algorithms. ARI ranges from 0 to 1, where 
ARI values closer to 1 indicate more similar clustering results. To cal-
culate the ARI, the contingency table is constructed by comparing the 
true domain labels with the predicted tissue structure identification 
result for each spot. The contingency table contains four entries: TF 
is the number of spots that are in the same cluster in both the true and 
predicted clustering, TN is the number of pairs that are in different 
clusters in both the true and predicted clustering, FN is the number of 
pairs that are in the same cluster in the true clustering but in different 
clusters in the predicted clustering, and FP is the number of pairs that 
are in different clusters in the true clustering but in the same cluster in 
the predicted clustering. ARI is computed as

ARI = TP + TN − E
TP + TN + FP + FN − E

where E is the expected value of the index, which is the value that would 
be obtained if the clustering were completely random. The expected 
value of the index is calculated as

E = (TP + FP) × (TP + FN) + (FN + TN) × (FP + TN)
TP + TN + FP + FN .

HOM. The HOM score is a metric that quantifies the homogeneity of a 
cluster labeling when compared to a known ground truth. A clustering 
outcome is considered homogeneous if all of its clusters exclusively 
comprise data points belonging to a single class. The HOM score is 
expressed as a value between 0 and 1, with 1 representing a perfectly 
homogeneous labeling. We followed the instructions at ref. 75.

COM. The COM score is a metric that evaluates the completeness of 
a cluster labeling with respect to a ground truth. A clustering result is 
considered complete if all data points that belong to a certain class are 
grouped into the same cluster. The COM score ranges from 0 to 1, with 
a value of 1 indicating a perfect and complete labeling. We followed the 
instructions at ref. 76.

CHAOS. The CHAOS score is a metric that has been used to assess the 
performance of spatial continuity in mass spectrometry imaging 
field77,78, and spatial transcriptomics field45. A lower CHAOS indicates a 
better continuity result of spatial domain identification. To apply CHAOS 
to quantify each spatial clustering method’s performance, we first build 
a 1-nearest neighbor (NN) graph for each data. Specifically, each cell is 
connected to another cell, which has minimum Euclidean distance in 
physical space. With this 1-NN graph, suppose dij is the Euclidean dis-
tance between celli and cellj in physical space, we compute w as

wkij = {
dij, if celli and cellj are connected in the 1NNgraph in cluster k

0, otherwise

Suppose nk  is the number of cells in the k  th spatial domain, n is 
the total number of cells in the data, and K  is the number of unique 
spatial domains. CHAOS is computed as

CHAOS =
∑K

k=1∑
nk
ij wkij

N .

PAS. The PAS score has been used in quantifying the spatial homoge-
neity of spatial domain identification algorithms in the field of spatial 
transcriptomics45. A lower PAS score indicates a better continuity of 
detected spatial domains, which expects higher cell homogeneity 
within spatial domains. The PAS score is calculated as the percentage 
of cells with a spatial domain label that is different from at least six of 
its neighboring ten cells.

ASW. ASW79 is originally used for evaluating the degree of agreement 
between clustering labels and an embedding (or distance matrix). We 
extend ASW to evaluate the spatial coherence of predicted domains 
regarding to the physical space. The value of ASW ranges from −1 to 1 
(we rescaled ASW to 0–1), and the closer ASW is to 1, the better the 
performance. To define ASW, silhouette width (SW) should be defined 
first, and ASW could be computed by averaging SWs across all cells. 
Suppose a is the mean distance between a cell and all other cells in the 
same spatial domain, and b is the mean distance between a cell and all 
other cells in the next nearest cluster, then SW of a cell is computed as

SW = b − a
max(a,b) .
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Moran’s I. Moran’s I is a metric to quantify the degree of spatial autocor-
relation in spatial statistics, and has been widely used to evaluate 
whether the detected SVGs exhibit an organized spatial expression 
pattern in the spatial omics field12,80. The value of Moran’s I ranges from 
−1 to 1, and a value close to 1 indicates a clear spatial gene expression 
pattern, a value close to 0 indicates a random spatial gene expression 
pattern, and a value close to −1 indicates a gene expression pattern that 
looks like a chess board. In our case, Moran’s I will be used to evaluate 
the spatial autocorrelation for each SVG computed by each method. 
For one gene, suppose xi and xj are the gene expression values of celli 
and cellj, ̄x  is the average gene expression value of the gene, and N  is 
the number of cells. Then Moran’s I  is computed as

Moran’s I = N
W

∑N
i=1∑

N
j=1 wij(xi − ̄x)(xj − ̄x)

∑N
i=1 (xi − ̄x)2

where

wij = {
1, & if i and j are spatial neighbors

0, & else

W = ∑
i, j

wij.

Geary’s C. Like Moran’s I, Geary’s C is also a metric to quantify the 
degree of spatial autocorrelation in spatial omics analysis. The differ-
ence is that Geary’s C ranges from 0 to 2, while Moran’s I ranges from 
−1 to 1. Following the same set of notations as Moran’s I, the Geary’s C is 
computed as follows. The relationship between Moran’s I and Geary’s 
C is explained in Supplementary Note 13.

Geary’sC = N
2W

∑N
i=1∑

N
j=1 wij(xi − xj)

2

∑N
i=1 (xi − ̄x)2

Divide and conquer strategy
We propose a divide and conquer approach to solve the large-scale spa-
tial clustering problem as illustrated in Fig. 5. The original SpaceFlow is 
applied on the 31 slices independently. We adopted the procedure and 
parameter settings as suggested by the original author81. SpaceFlow 
can output both the context-aware embedding and spatial clustering 
labels. The spatial clustering labels is generated by Louvain clustering 
applied on the embedding. The embedding shown in Fig. 5a was gen-
erated by applying uniform manifold approximation and projection 
(UMAP) on the concatenated embeddings of all 31 slices to illustrate 
the existence of batch effect.

Harmony integration method56 was applied to the concatenated 
embeddings (stored as an Anndata object in Python environment) of 
the 31 slices. We used the procedure suggested in SCANPY. In detail, 
the PCA was first applied on the concatenated embedding matrix 
to reduce the dimension to 30. Then Harmony integration function 
(SCANPY implementation) was applied on the Anndata object, with 
different slices indicated by ‘slice_id’. Then a harmonized embedding 
was generated as stored in X_pca_harmony of the Anndata object. We 
built a neighborhood graph using the harmonized embedding, based 
on which UMAP visualization (as shown in the embedding of Fig. 5b) 
and Leiden clustering (as shown in the predicted label in Fig. 5b, right) 
can be performed.

After generating the harmonized embedding, clustering meth-
ods other than Leiden can be applied. We tested Louvain and mclust, 
together with Leiden, which are the most widely adpoted algorithms 
in existing spatial clustering methods. In the text and Fig. 5, SpaceFlow 

means the original SpaceFlow that can only be used for single-slice 
analysis. SpaceFlow-DC (or ‘Proposed’ or SpaceFlow-DC-mclust) means 
using the harmonized embedding followed by mclust to get spatial 
clustering labels. SpaceFlow-DC-Louvain means using the harmo-
nized embedding followed by Louvain to get spatial clustering labels. 
SpaceFlow-DC-Leiden means using the harmonized embedding fol-
lowed by Leiden to get spatial clustering labels. Embedding (Proposed) 
means using UMAP to visualize the harmonized embedding (Fig. 5b). 
Embedding (SpaceFlow) means using UMAP to visualize the nonhar-
monized embedding (Fig. 5a).

The per-slice NMI was recorded using the scikit-learn implementa-
tion of NMI to evaluate each slice’s clustering accuracy, independently. 
The all-slice NMI was recorded to evaluate all cell’s clustering accuracy 
across all 31 slices. Due to the SpaceFlow-predicted labels across slices 
are not aligned, the per-slice accuracy is high while the all-slice accuracy 
is low (Fig. 5f,g).

Computational resources
Intel Xeon E5-2683v3 central processing unit (CPU) (2.00 GHz, 35 MB 
L3 cache, 14 CPU cores in total), 128 GB memory, and NVIDIA TITAN Xp 
graphics processing unit (GPU) (12 GB of memory).

The rank-based overall score
In Fig. 4, we evaluated the accuracy, consistency, maker genes score 
and scalability of each method. As with previous benchmark studies42, 
we defined the overall score for each component by integrating the 
metrics it contains (that is, accuracy contains NMI, HOM and COM; 
continuity contains CHAOS, ASW and PAS; marker genes contains 
Moran’s I and Geary’s C; scalability contains time and memory) to 
evaluate each methods among 10x Visium datasets or imaging-based 
datasets. As an example of the accuracy score based on imaging-based 
datasets, first, we calculated the average NMI, HOM and COM for each 
method among imaging-based datasets; then we sorted the NMI, HOM 
and COM values of methods in ascending order (from best to worst) 
to get rankNMI, rankHOM and rankCOM; finally, we calculated the average 
value of rankNMI, rankHOM and rankCOM to obtain the overall score value 
of accuracy, as follows:

Overall score(accuracy) = 1
3 (rankNMI + rankHOM + rankCOM)

The overall scores of others (that is consistency, maker genes score 
and scalability) are also used as described above, as follows:

Overall score(consistency) = 1
3 (rankCHAOS + rankASW + rankPAS)

Overall score(maker genes score) = 1
2 (rankMoran’s I + rankGeary’sC)

Overall score(consistency) = 1
2 (rankTime + rankMemory)

Correlation of methods performance
To assess the correlation between the relative performance of all meth-
ods applied to two data (for example, Data1 and Data2), we utilized 
Spearman’s rank correlation coefficient implemented in the scipy 
package82. For the NMI metric (as reported in Fig. 3a), we formed two 
vectors to input into the Spearman’s correlation computation. The 
first vector contained each method’s NMI score on Data1, with each 
element representing the median NMI of ten independent runs. The 
second vector contained each method’s NMI score on Data2, with each 
element representing the median NMI of ten independent runs. When 
assessing the relative performance between two spatial technologies 
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(as reported in Fig. 3b), a similar approach was adopted, with the only 
difference being that the performance vector was formed by taking the 
median scores across all data within the spatial technology.

Scientific computing and plotting
We used Python (version 3.9) environment to conduct this study. Impor-
tant packages include scanpy33 (version 1.9.1), numpy83 (version 1.22.4), 
squidpy84 (version 1.2.3), pandas85 (version 1.5.1), scipy82 (version 1.9.3), 
scikit-learn86 (version 1.1.2), matplotlib87 (version 3.6.0), seaborn88 
(version 0.12.1) and palettable89 (version 3.3.0).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data1 to Data12 were downloaded from ref. 64. Data13 to Data21 are 
available from ref. 65. Data22 to Data24 were downloaded from ref. 66.  
Data25 to Data29 were downloaded from ref. 67. Data30 was down-
loaded from ref. 68. Data31 to Data33 are available from ref. 69. Data34 
was downloaded from ref. 69. Data35 to Data41 were downloaded from 
ref. 70. Data42 to Data54 were downloaded from https://www.livercel-
latlas.org/. Data55 to Data56 are available at GSE111672. Data57 to Data87 
were downloaded from ref. 71. Source data are provided with this paper.

Code availability
The code and scripts used for data preprocessing and visualiza-
tion are available at https://github.com/zhaofangyuan98/SDM-
Bench. Our benchmarking workflow is provided as a reproducible 
pipeline at https://github.com/zhaofangyuan98/SDMBench/tree/
main/SDMBench. We also provide a tutorial at https://github.com/
zhaofangyuan98/SDMBench/tree/main/Tutorial.
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Extended Data Fig. 1 | The differences between spatial clustering and cell type clustering. Spatial clustering and cell type clustering are different tasks, we 
explained their differences in their goals, features, and representative work. We also used an example from mouse motor cortex data to explain their differences.
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Extended Data Fig. 2 | Methods performance on various biotechnologies. On the heatmap, the rows represent the biotechnologies, the columns represent the 
methods, and each value in the figure represents the NMI values.
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Extended Data Fig. 3 | User guidance. Recommend the suitable methods for users according to the data at hand. Note that the method choice was based on the 
accuracy scores. For more specific recommendations, users should look at Fig. 4 to refer to other aspects of performance.
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Extended Data Fig. 4 | Performance on challenging datasets. A: This figure records all methods IoU across small and non-continuous data, where data35-data41 are 
breast cancer data and data42-data54 are liver data. B: This figure records the number of successful identifications (IoU >= 0.5) for each method.
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Extended Data Fig. 5 | Limitations of current methods on large-scale 
datasets. A large-scale MERFISH dataset was used to illustrate that current 
methods cannot be applied on the dataset. A: The dataset information. B: Other 
large-scale datasets available in the field. Each point is a dataset, x stands for the 
number of cells, y stands for the number of slices. The publication information  
is annotated beside the points. Colors indicate different spatial technologies.  

C: Issues of each method when applied on the dataset in A. Time issue means the 
running time exceeds 5 hours, and memory issue means the program report”out 
of memory” error. Computational resources can be found in Methods. D: The 
running time of BASS and STAGATE, as the function of the number of slices of the 
dataset in (A).
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