Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and perspectives in computational deconvolution of genomics data

Abstract

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of computational deconvolution in various genomics data types and related challenges.
Fig. 2: Lack of agreement among different benchmark studies.
Fig. 3: Comparison among different spatial transcriptomics benchmark studies.

Similar content being viewed by others

References

  1. Hatano, A. et al. CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses. Database https://doi.org/10.1093/database/bar046 (2011).

  2. Oliver, A. J. et al. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front. Immunol. 9, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qi, L. & Teschendorff, A. E. Cell-type heterogeneity: why we should adjust for it in epigenome and biomarker studies. Clin. Epigenetics 14, 31 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, H. et al. DeconPeaker, a deconvolution model to identify cell types based on chromatin accessibility in ATAC-seq data of mixture samples. Front. Genet. 11, 392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng, W. et al. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data. Nat. Commun. 10, 4613 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  6. Zheng, S. C. et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics 10, 925–940 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, Y. T. et al. A comparison of epithelial cell content of oral samples estimated using cytology and DNA methylation. Epigenetics 17, 327–334 (2022).

    Article  PubMed  Google Scholar 

  8. Odintsova, V. V. et al. Predicting complex traits and exposures from polygenic scores and blood and buccal DNA methylation profiles. Front. Psychiatry 12, 688464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gervin, K. et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin. Epigenetics 11, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salas, L. A. et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat. Commun. 13, 761 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023). This work presents human methylome atlas data for 39 different cell types. Comprehensive datasets like this one are crucial for cellular deconvolution based on cell-type-specific DNA methylation reference.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, T. et al. A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution. Nat. Methods 19, 296–306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-seq data. Genome Biol. 21, 221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, V. et al. Cell-specific characterization of the placental methylome. BMC Genomics 22, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, Q., Liu, Y., Du, Y. & Garmire, L. X. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteomics Bioinformatics 19, 267–281 (2021).

    Article  PubMed  Google Scholar 

  17. Nadel, B. B. et al. Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples. Brief. Bioinformatics 22, bbab265 (2021).

    Article  PubMed  Google Scholar 

  18. Abdelaal, T. et al. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol. 20, 194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Causer, A. et al. Deep spatial-omics analysis of head & neck carcinomas provides alternative therapeutic targets and rationale for treatment failure. NPJ Precis. Oncol. 7, 89 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arneson, D., Yang, X. & Wang, K. MethylResolver—a method for deconvoluting bulk DNA methylation profiles into known and unknown cell contents. Commun. Biol. 3, 422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in epigenome-wide association studies. BMC Bioinformatics 18, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability in single cell RNA sequencing. Nat. Commun. 10, 2611 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Cao, Y., Yang, P. & Yang, J. Y. H. A benchmark study of simulation methods for single-cell RNA sequencing data. Nat. Commun. 12, 6911 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01139-4 (2022).

  29. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Jin, H. & Liu, Z. A benchmark for RNA-seq deconvolution analysis under dynamic testing environments. Genome Biol. 22, 102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cobos, F. A., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020). This study provides a systematic comparison of various computational methods for cell-type deconvolution for transcriptomics data and underscores areas needing improvement and future research in the field.

    Article  ADS  Google Scholar 

  32. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, i436–i445 (2019). This work systematically benchmarked computational cell-type quantification methods using bulk RNA-seq samples. It suggests that the future efforts should be made to refine cell population definitions and cell-type-specific signatures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaakkola, M. K. & Elo, L. L. Computational deconvolution to estimate cell type-specific gene expression from bulk data. NAR Genom. Bioinform. 3, lqaa110 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Nadel, B. B. et al. The Gene Expression Deconvolution Interactive Tool (GEDIT): accurate cell type quantification from gene expression data. Gigascience 10, giab002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29, 1083–1085 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Altboum, Z. et al. Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol. Syst. Biol. 10, 720 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z. et al. Transcriptome deconvolution of heterogeneous tumor samples with immune infiltration. iScience 9, 451–460 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Hunt, G. J., Freytag, S., Bahlo, M. & Gagnon-Bartsch, J. A. dtangle: accurate and robust cell type deconvolution. Bioinformatics https://doi.org/10.1093/bioinformatics/bty926 (2018).

  41. Menden, K. et al. Deep learning–based cell composition analysis from tissue expression profiles. Sci. Adv. 6, eaba2619 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. Nat. Commun. 10, 2975 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Sutton, G. J. et al. Comprehensive evaluation of deconvolution methods for human brain gene expression. Nat. Commun. 13, 1358 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Zhang, W. et al. ARIC: accurate and robust inference of cell type proportions from bulk gene expression or DNA methylation data. Brief. Bioinform. 23, bbab362 (2022).

    Article  MathSciNet  PubMed  Google Scholar 

  47. Zhang, H., Cai, R., Dai, J. & Sun, W. EMeth: An EM algorithm for cell type decomposition based on DNA methylation data. Sci. Rep. 11, 5717 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Houseman, E. A., Molitor, J. & Marsit, C. J. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30, 1431–1439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rahmani, E. et al. BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol. 19, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, Z. & Wu, H. TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis. Genome Biol. 20, 190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Houseman, E. A. et al. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. BMC Bioinformatics 17, 259 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaushal, A. et al. Comparison of different cell type correction methods for genome-scale epigenetics studies. BMC Bio informatics 18, 216 (2017).

    Article  Google Scholar 

  54. Brägelmann, J. & Lorenzo Bermejo, J. A comparative analysis of cell-type adjustment methods for epigenome-wide association studies based on simulated and real data sets. Brief. Bioinform. 20, 2055–2065 (2019).

    Article  PubMed  Google Scholar 

  55. Song, J. & Kuan, P.-F. A systematic assessment of cell type deconvolution algorithms for DNA methylation data. Brief. Bioinform. 23, bbac449 (2022).

    Article  PubMed  Google Scholar 

  56. Zheng, X. et al. MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes. Genome Biol. 15, 419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barrett, J. E. et al. Quantification of tumour evolution and heterogeneity via Bayesian epiallele detection. BMC Bioinformatics 18, 354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee, D., Lee, S. & Kim, S. PRISM: methylation pattern-based, reference-free inference of subclonal makeup. Bioinformatics 35, i520–i529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yin, L. et al. Virtual methylome dissection facilitated by single-cell analyses. Epigenetics Chromatin 12, 66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scott, C. A. et al. Identification of cell type-specific methylation signals in bulk whole genome bisulfite sequencing data. Genome Biol. 21, 156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fong, J. et al. Determining subpopulation methylation profiles from bisulfite sequencing data of heterogeneous samples using DXM. Nucleic Acids Res. 49, e93 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jeong, Y. et al. Systematic evaluation of cell-type deconvolution pipelines for sequencing-based bulk DNA methylomes. Brief. Bioinformatics 23, bbac248 (2022).

    Article  PubMed  Google Scholar 

  63. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01273-7 (2022).

  65. Cable, D. M. et al. Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 19, 1076–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Danaher, P. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat. Commun. 13, 385 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jiménez-Sánchez, A., Cast, O. & Miller, M. L. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res. 79, 6238–6246 (2019).

    Article  PubMed  Google Scholar 

  69. Bae, S., Choi, H. & Lee, D. S. spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data. Genome Med. 15, 19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Song, Q. & Su, J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief. Bioinform. 22, bbaa414 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, H., Li, H., Zhou, J. & Gao, X. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Bioinformatics 38, 4878–4884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lund, J. B. et al. AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics. NAR Genom. Bioinform 4, lqac073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Moriel, N. et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc. 16, 4177–4200 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vahid, M. R. et al. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01697-9 (2023).

  78. Tu, J. -J., Li, H. -S., Yan, H. & Zhang, X. -F. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning. Bioinformatics 39, btac825 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Wei, R. et al. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190–1199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, D., Liu, Z., Li, T., Wu, Q. & Wang, C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 50, e42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat. Commun. 13, 2339 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Chidester, B., Zhou, T., Alam, S. & Ma, J. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Nat. Genet. 55, 78–88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geras, A. et al. Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data. Genome Biol. 24, 120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods https://doi.org/10.1038/s41592-022-01480-9 (2022). This work performed comprehensive benchmarking of spatial transcriptomics deconvolution methods on both real and simulated datasets.

  86. Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Yan, L. & Sun, X. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics 39, btac805 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, X., Sun, S. & Yang, S. An efficient and flexible method for deconvoluting bulk RNA-seq data with single-cell RNA-seq data. Cells 8, 1161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Racle, J. & Gfeller, D. EPIC: a tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol. Biol. 2120, 233–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Z. et al. Codabench: flexible, easy-to-use, and reproducible meta-benchmark platform. Patterns 3, 100543 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. https://doi.org/10.1038/s41591-023-02327-2 (2023).

  93. White, B. S. et al. Community assessment of methods to deconvolve cellular composition from bulk gene expression. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494221 (2022).

  94. Osumi-Sutherland, D. et al. Cell type ontologies of the Human Cell Atlas. Nat. Cell Biol. 23, 1129–1135 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Li, H., Huang, Q., Liu, Y. & Garmire, L. X. Single cell transcriptome research in human placenta. Reproduction 160, R155–R167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steen, C. B. et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 39, 1422–1437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184, 5482–5496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Im, Y. & Kim, Y. A comprehensive overview of RNA deconvolution methods and their application. Mol. Cells 46, 99–105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Cai, M. et al. Robust and accurate estimation of cellular fraction from tissue omics data via ensemble deconvolution. Bioinformatics 38, 3004–3010 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Melo Ferreira, R., Freije, B. J. & Eadon, M. T. Deconvolution tactics and normalization in renal spatial transcriptomics. Front. Physiol. 12, 812947 (2021).

    Article  PubMed  Google Scholar 

  103. Weber, L. M. et al. Essential guidelines for computational method benchmarking. Genome Biol. 20, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Decamps, C. et al. DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. BMC Bioinformatics 22, 473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Germain, P. -L., Sonrel, A. & Robinson, M. D. pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools. Genome Biol. https://doi.org/10.1186/s13059-020-02136-7 (2020).

  107. Su, S. et al. CellBench: R/Bioconductor software for comparing single-cell RNA-seq analysis methods. Bioinformatics 36, 2288–2290 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  Google Scholar 

  109. Zhong, Y., Wan, Y. -W., Pang, K., Chow, L. M. L. & Liu, Z. Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics 14, 89 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li, B., Li, T., Liu, J. S. & Liu, X. S. Computational deconvolution of tumor-infiltrating immune components with bulk tumor gene expression data. Methods Mol. Biol. 2120, 249–262 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Mullen, K. M. & van Stokkum, I. H. M. nnls: the Lawson-Hanson algorithm for non-negative least squares (NNLS). R package version 1.4. https://CRAN.R-project.org/package=nnls/ (2023).

  112. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zaitsev, K., Bambouskova, M., Swain, A. & Artyomov, M. N. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Nat. Commun. 10, 2209 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  116. Sang-aram, C., Browaeys, R., Seurinck, R. & Saeys, Y. Spotless: a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. eLife 12, RP88431 (2023).

    Google Scholar 

Download references

Acknowledgements

We thank B. Nadel, S. Gupta, S. Mangul and A. Sharma for the discussions in the early stage of this project. A.E.T. is supported by NSFC grants 32370699 and 32170652. L.X.G. is supported by NIH/NIGMS R01 LM012373 and R01 LM012907 and NICHD R01 HD084633. Q.N. is supported by NHMRC investigator fellowship GNT2008928 and NHMRC project grant 2001514.

Author information

Authors and Affiliations

Authors

Contributions

L.X.G. initiated and led the project. L.X.G., Y.L. and Q.H. wrote the initial manuscript, Y.L. and L.X.G. made the figures with the help of Q.N., L.X.G., Y.L., C.X., S.T., N.K., M.P., A.E.T. and Q.N. C.X. revised the manuscript.

Corresponding author

Correspondence to Lana X. Garmire.

Ethics declarations

Competing interests

S.A.T. is a remunerated member of the scientific advisory boards of Qiagen, Foresite Labs and Element Biosciences, a co-founder and equity holder of TransitionBio and part-time employee of GlaxoSmithKline since January 2024. L.X.G. is a remunerated member of the scientific advisory boards of Simulations Plus.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Lin Tang, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmire, L.X., Li, Y., Huang, Q. et al. Challenges and perspectives in computational deconvolution of genomics data. Nat Methods 21, 391–400 (2024). https://doi.org/10.1038/s41592-023-02166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02166-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research