Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research

Abstract

Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detection and identification of a broad range of metabolites. Here we discuss current common strategies for UHPLC–HRMS-based metabolomics, with a focus on expanding metabolome coverage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of data generated by analyzing the same extract from Arabidopsis thaliana leaves in two different systems.
Fig. 2: The relationship between resolution and cycle time in an ion trap-based mass spectrometer.
Fig. 3: Diagram of a hypothetical ion mobility mass spectrometer with different types of ion mobility cells.
Fig. 4: Conceptual differences characterizing the process and results obtained from different tandem mass fragmentation strategies.
Fig. 5: Strategies used to increase the coverage of metabolome analyses.

References

  1. 1.

    Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).

    Google Scholar 

  2. 2.

    Vuckovic, D. Improving metabolome coverage and data quality: advancing metabolomics and lipidomics for biomarker discovery. Chem. Commun. 54, 6728–6749 (2018).

    Google Scholar 

  3. 3.

    Marx, V. Boost that metabolomic confidence. Nat. Methods 17, 33–36 (2020).

    Google Scholar 

  4. 4.

    Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    Google Scholar 

  5. 5.

    Navarro-Munoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    Google Scholar 

  6. 6.

    Miggiels, P., Wouters, B., Van Westen, G. J. P., Dubbelman, A.-C. & Hankemeier, T. Novel technologies for metabolomics: more for less. Trends Anal. Chem. 120, 115323 (2019).

    Google Scholar 

  7. 7.

    Bottcher, T. From molecules to life: quantifying the complexity of chemical and biological systems in the universe. J. Mol. Evol. 86, 1–10 (2018).

    Google Scholar 

  8. 8.

    Afendi, F. M. et al. KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol. 53, e1 (2011).

    Google Scholar 

  9. 9.

    Kind, T. & Fiehn, O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105 (2007).

    Google Scholar 

  10. 10.

    da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015). An interesting commentary on the small proportion of metabolome coverage.

    Google Scholar 

  11. 11.

    Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Google Scholar 

  12. 12.

    Goodman, R. P. et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 583, 122–126 (2020).

    Google Scholar 

  13. 13.

    Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018). A very interesting cutting edge example of how metabolomics data can be explored. The authors developed a frameowork to predict the metabolic environment that best explains a metagenomics profile.

    Google Scholar 

  14. 14.

    Fàbregas, N. et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9, 4680 (2018).

    Google Scholar 

  15. 15.

    Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

    Google Scholar 

  16. 16.

    Hartl, J. et al. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat. Metab. 2, 153–166 (2020).

    Google Scholar 

  17. 17.

    Medina, C. B. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020).

    Google Scholar 

  18. 18.

    Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Google Scholar 

  19. 19.

    Pérez-Míguez, R., Sánchez-López, E., Plaza, M., Marina, M. L. & Castro-Puyana, M. Capillary electrophoresis–mass spectrometry metabolic fingerprinting of green and roasted coffee. J. Chromatogr. A 1605, 360353 (2019).

    Google Scholar 

  20. 20.

    Giallourou, N. et al. Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growth. Sci. Adv. 6, eaay5969 (2020).

    Google Scholar 

  21. 21.

    Zhang, Z. et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci. Adv. 6, eaay5781 (2020).

    Google Scholar 

  22. 22.

    Cocuron, J.-C., Koubaa, M., Kimmelfield, R., Ross, Z. & Alonso, A. P. A combined metabolomics and fluxomics analysis identifies steps limiting oil synthesis in maize embryos. Plant Physiol. 181, 961 (2019).

    Google Scholar 

  23. 23.

    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016). A good review of recent developments in metabolomics and their conribution to providing better biological insights from metabolomics analysis with a particular focus on data analysis and its integration with other tools in systems biology.

    Google Scholar 

  24. 24.

    Sumner, L. W., Lei, Z., Nikolau, B. J. & Saito, K. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat. Prod. Rep. 32, 212–229 (2015).

    Google Scholar 

  25. 25.

    Wishart, D. S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 99, 1819–1875 (2019).

    Google Scholar 

  26. 26.

    Kim, J. T., Li, V. L., Terrell, S. M., Fischer, C. R. & Long, J. Z. Family-wide annotation of enzymatic pathways by parallel in vivo metabolomics. Cell Chem. Biol. 26, 1623–1629 (2019). An outstanding work showing the power of untargeted UHPLC–HRMS. The authors used metabolomics for family-wide discovery of enzymatic pathways in mice.

  27. 27.

    Sonawane, P. D. et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 3, 16205 (2016).

    Google Scholar 

  28. 28.

    Perchat, N. et al. Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites. Proc. Natl Acad. Sci. USA 115, E4358 (2018).

    Google Scholar 

  29. 29.

    Alseekh, S. et al. Canalization of tomato fruit metabolism. Plant Cell 29, 2753–2765 (2017).

    Google Scholar 

  30. 30.

    Papp, B., Pal, C. & Hurst, L. D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Google Scholar 

  31. 31.

    Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. & Fischer, E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279, 6613–6619 (2004).

    Google Scholar 

  32. 32.

    Shi, T. et al. Metabolomics analysis and metabolite–agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. Plant J. 103, 279–292 (2020).

    Google Scholar 

  33. 33.

    de Abreu, E. L. F. et al. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. Plant J. 90, 319–329 (2017).

    Google Scholar 

  34. 34.

    Wolfender, J. L., Litaudon, M., Touboul, D. & Queiroz, E. F. Innovative omics-based approaches for prioritisation and targeted isolation of natural products—new strategies for drug discovery. Nat. Prod. Rep. 36, 855–868 (2019).

    Google Scholar 

  35. 35.

    Sevin, D. C., Fuhrer, T., Zamboni, N. & Sauer, U. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat. Methods 14, 187–194 (2017). A great example of the exploratory potential of untargeted metabolomics to discover new biochemical processes in a high-throughput manner.

  36. 36.

    Liu, Y., Liu, Q., Krivoruchko, A., Khoomrung, S. & Nielsen, J. Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nat. Chem. Biol. 16, 197–205 (2020).

    Google Scholar 

  37. 37.

    Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).

    Google Scholar 

  38. 38.

    Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Google Scholar 

  39. 39.

    Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    Google Scholar 

  40. 40.

    Ducker, G. S. et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 114, 11404–11409 (2017).

    Google Scholar 

  41. 41.

    Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017).

    Google Scholar 

  42. 42.

    Wolfender, J.-L., Nuzillard, J.-M., van der Hooft, J. J. J., Renault, J.-H. & Bertrand, S. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem. 91, 704–742 (2019). An excellent review of different strategies to speed up the process of metabolite identification, a fundamental gap in the field of metabolomics.

    Google Scholar 

  43. 43.

    Ortmayr, K., Causon, T. J., Hann, S. & Koellensperger, G. Increasing selectivity and coverage in LC–MS based metabolome analysis. Trends Anal. Chem. 82, 358–366 (2016).

    Google Scholar 

  44. 44.

    Fekete, S., Veuthey, J.-L. & Guillarme, D. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice. J. Chromatogr. A 1408, 1–14 (2015).

    Google Scholar 

  45. 45.

    Plumb, R. et al. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2331–2337 (2004).

    Google Scholar 

  46. 46.

    Lopez-Ruiz, R., Romero-Gonzalez, R. & Frenich, A. G. Ultrahigh-pressure liquid chromatography–mass spectrometry: an overview of the last decade. Trends Anal. Chem. 118, 170–181 (2019).

    Google Scholar 

  47. 47.

    Kaufmann, A. Combining UHPLC and high-resolution MS: a viable approach for the analysis of complex samples? Trends Anal. Chem. 63, 113–128 (2014).

    Google Scholar 

  48. 48.

    Pezzatti, J. et al. Implementation of liquid chromatography–high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: a tutorial. Anal. Chim. Acta 1105, 28–44 (2020).

  49. 49.

    Gika, H. G., Wilson, I. D. & Theodoridis, G. A. LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J. Chromatogr. B 966, 1–6 (2014).

    Google Scholar 

  50. 50.

    Zhang, W., Hankemeier, T. & Ramautar, R. Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Curr. Opin. Biotechnol. 43, 1–7 (2017).

    Google Scholar 

  51. 51.

    Sitnikov, D. G., Monnin, C. S. & Vuckovic, D. Systematic assessment of seven solvent and solid-phase extraction methods for metabolomics analysis of human plasma by LC–MS. Sci. Rep. 6, 38885 (2016).

    Google Scholar 

  52. 52.

    Sindelar, M. & Patti, G. J. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 142, 9097–9105 (2020).

    Google Scholar 

  53. 53.

    Tsugawa, H. Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr. Opin. Biotechnol. 54, 10–17 (2018). An excellent review of current computational methods available for metabolomics data analysis and annotation.

    Google Scholar 

  54. 54.

    Salem, M. A. et al. An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 103, 1614–1632 (2020).

  55. 55.

    Tulipani, S., Llorach, R., Urpi-Sarda, M. & Andres-Lacueva, C. Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal. Chem. 85, 341–348 (2013).

    Google Scholar 

  56. 56.

    Martin, A. C. et al. Evaluating solvent extraction systems using metabolomics approaches. RSC Adv. 4, 26325–26334 (2014). One of the few recent comprehensive studies of a crucial but often overlooked step in metabolomics experiments.

    Google Scholar 

  57. 57.

    Rogeberg, M., Malerod, H., Roberg-Larsen, H., Aass, C. & Wilson, S. R. On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J. Pharm. Biomed. Anal. 87, 120–129 (2014).

    Google Scholar 

  58. 58.

    Fumes, B. H., Andrade, M. A., Franco, M. S. & Lanças, F. M. On‐line approaches for the determination of residues and contaminants in complex samples. J. Sep. Sci. 40, 183–202 (2017).

    Google Scholar 

  59. 59.

    Lubin, A., Sheng, S., Cabooter, D., Augustijns, P. & Cuyckens, F. Flexible nano- and microliter injections on a single liquid chromatography–mass spectrometry system: minimizing sample preparation and maximizing linear dynamic range. J. Chromatogr. A 1524, 101–107 (2017).

    Google Scholar 

  60. 60.

    Ocaña-González, J. A., Fernández-Torres, R., Bello-López, M. Á. & Ramos-Payán, M. New developments in microextraction techniques in bioanalysis. A review. Anal. Chim. Acta 905, 8–23 (2016).

    Google Scholar 

  61. 61.

    Reyes-Garcés, N. & Gionfriddo, E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trends Anal. Chem. 113, 172–181 (2019).

    Google Scholar 

  62. 62.

    Reyes-Garcés, N. et al. Advances in solid phase microextraction and perspective on future directions. Anal. Chem. 90, 302–360 (2018).

    Google Scholar 

  63. 63.

    Alam, M. N. & Pawliszyn, J. Effect of binding components in complex sample matrices on recovery in direct immersion solid-phase microextraction: friends or foe? Anal. Chem. 90, 2430–2433 (2018).

    Google Scholar 

  64. 64.

    Gionfriddo, E., Souza-Silva, É. A. & Pawliszyn, J. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures. Anal. Chem. 87, 8448–8456 (2015).

    Google Scholar 

  65. 65.

    Souza Silva, É. A. & Pawliszyn, J. Optimization of fiber coating structure enables direct immersion solid phase microextraction and high-throughput determination of complex samples. Anal. Chem. 84, 6933–6938 (2012).

    Google Scholar 

  66. 66.

    Yang, L., Said, R. & Abdel-Rehim, M. Sorbent, device, matrix and application in microextraction by packed sorbent (MEPS): a review. J. Chromatogr. B 1043, 33–43 (2017).

    Google Scholar 

  67. 67.

    Tang, D.-Q., Zou, L., Yin, X.-X. & Ong, C. N. HILIC–MS for metabolomics: an attractive and complementary approach to RPLC–MS. Mass Spectrom. Rev. 35, 574–600 (2016).

    Google Scholar 

  68. 68.

    Wang, L., Wei, W., Xia, Z., Jie, X. & Xia, Z. Z. Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Anal.y Chem. 80, 495–506 (2016). A good review of the different mixed-mode sationary phases for LC.

  69. 69.

    Berthelette, K. D. et al. Evaluating MISER chromatography as a tool for characterizing HILIC column equilibration. J. Chromatogr. A 1619, 460931 (2020).

    Google Scholar 

  70. 70.

    Wu, Q. et al. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography. J. Chromatogr. A 1492, 61–69 (2017).

    Google Scholar 

  71. 71.

    Ren, X. et al. Mixed-mode liquid chromatography with a stationary phase co-functionalized with ionic liquid embedded C18 and an aryl sulfonate group. J. Chromatogr. A 1564, 137–144 (2018).

    Google Scholar 

  72. 72.

    Thakker, A. Serial coupling of chromatographic columns having orthogonal selectivity to improve the coverage of oxidised lipidome for mass spectrometry analysis. Preprint at bioRxiv https://doi.org/10.1101/741579 (2019).

  73. 73.

    Gabelica, V. & Marklund, E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 42, 51–59 (2018).

    Google Scholar 

  74. 74.

    Kirk, A. T., Bohnhorst, A., Raddatz, C.-R., Allers, M. & Zimmermann, S. Ultra-high-resolution ion mobility spectrometry—current instrumentation, limitations, and future developments. Anal. Bioanal. Chem. 411, 6229–6246 (2019). An excellent review of the fundamental mechanisms of the most relevant IMS devices with a particular focus on strategies for improving resolution.

    Google Scholar 

  75. 75.

    Lanucara, F., Holman, S. W., Gray, C. J. & Eyers, C. E. The power of ion mobility–mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281 (2014).

    Google Scholar 

  76. 76.

    Paglia, G. & Astarita, G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 12, 797 (2017). A great protocol providing an introduction to some of the fundamentals in IMS with a focus on metabolomics applications.

    Google Scholar 

  77. 77.

    Zhang, X., Quinn, K., Cruickshank-Quinn, C., Reisdorph, R. & Reisdorph, N. The application of ion mobility mass spectrometry to metabolomics. Curr. Opin. Chem. Biol. 42, 60–66 (2018).

    Google Scholar 

  78. 78.

    D’Atri, V. et al. Adding a new separation dimension to MS and LC–MS: what is the utility of ion mobility spectrometry? J. Sep. Sci. 41, 20–67 (2018).

    Google Scholar 

  79. 79.

    Causon, T. J. & Hann, S. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility–mass spectrometry. J. Chromatogr. A 1416, 47–56 (2015).

    Google Scholar 

  80. 80.

    Zhang, X. et al. Performance of a high-pressure liquid chromatography–ion mobility–mass spectrometry system for metabolic profiling. Anal. Chem. 89, 6384–6391 (2017).

    Google Scholar 

  81. 81.

    Dear, G. J. et al. Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun. Mass Spectrom. 24, 3157–3162 (2010).

    Google Scholar 

  82. 82.

    Shimizu, A., Ohe, T. & Chiba, M. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry–mass spectrometry. Drug Metab. Dispos. 40, 1456–1459 (2012).

    Google Scholar 

  83. 83.

    Dwivedi, P. et al. Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 78, 8200–8206 (2006).

    Google Scholar 

  84. 84.

    Silveira, J. A., Ridgeway, M. E., Laukien, F. H., Mann, M. & Park, M. A. Parallel accumulation for 100% duty cycle trapped ion mobility–mass spectrometry. Int. J. Mass Spectrom. 413, 168–175 (2017).

    Google Scholar 

  85. 85.

    Koeniger, S. L., Merenbloom, S. I. & Clemmer, D. E. Evidence for many resolvable structures within conformation types of electrosprayed ubiquitin ions. J. Phys. Chem. B 110, 7017–7021 (2006).

    Google Scholar 

  86. 86.

    Merenbloom, S. I., Glaskin, R. S., Henson, Z. B. & Clemmer, D. E. High-resolution ion cyclotron mobility spectrometry. Anal. Chem. 81, 1482–1487 (2009). A pioneer work exploring alternative geometrical arragements as a means to improve IMS resolution.

    Google Scholar 

  87. 87.

    Glaskin, R. S., Ewing, M. A. & Clemmer, D. E. Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal. Chem. 85, 7003–7008 (2013).

    Google Scholar 

  88. 88.

    Giles, K. et al. A cyclic ion mobility–mass spectrometry system. Anal. Chem. 91, 8564–8573 (2019).

    Google Scholar 

  89. 89.

    Hollerbach, A. L. et al. Ultra-high-resolution ion mobility separations over extended path lengths and mobility ranges achieved using a multilevel structures for lossless ion manipulations module. Anal. Chem. 92, 7972–7979 (2020).

    Google Scholar 

  90. 90.

    Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. Preprint at bioRxiv https://doi.org/10.1101/2020.02.11.944900 (2020).

  91. 91.

    Gabelica, V. et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom. Rev. 38, 291–320 (2019).

    Google Scholar 

  92. 92.

    Haggarty, J. & Burgess, K. E. V. Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr. Opin. Biotechnol. 43, 77–85 (2017).

    Google Scholar 

  93. 93.

    Alvarez-Segura, T., Ortiz-Bolsico, C., Torres-Lapasió, J. R. & García-Álvarez-Coque, M. C. Serial versus parallel columns using isocratic elution: a comparison of multi-column approaches in mono-dimensional liquid chromatography. J. Chromatogr. A 1390, 95–102 (2015).

    Google Scholar 

  94. 94.

    Markley, J. L. et al. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 (2017).

    Google Scholar 

  95. 95.

    Nagana Gowda, G. A. & Raftery, D. Recent advances in NMR-based metabolomics. Anal. Chem. 89, 490–510 (2017).

    Google Scholar 

  96. 96.

    Schlotterbeck, G. & Ceccarelli, S. M. LC–SPE–NMR–MS: a total analysis system for bioanalysis. Bioanalysis 1, 549–559 (2009).

    Google Scholar 

  97. 97.

    Bingol, K. et al. Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal. Chem. 87, 3864–3870 (2015).

    Google Scholar 

  98. 98.

    Castro, A., Moco, S., Coll, J. & Vervoort, J. LC–MS–SPE–NMR for the isolation and characterization of neo-clerodane diterpenoids from Teucrium luteum subsp. flavovirens. J. Nat. Prod. 73, 962–965 (2010).

    Google Scholar 

  99. 99.

    Lambert, M. et al. Identification of natural products using HPLC–SPE combined with CapNMR. Anal. Chem. 79, 727–735 (2007).

    Google Scholar 

  100. 100.

    van der Hooft, J. J. J., Mihaleva, V., de Vos, R. C. H., Bino, R. J. & Vervoort, J. A strategy for fast structural elucidation of metabolites in small volume plant extracts using automated MS-guided LC–MS–SPE–NMR. Magn. Reson. Chem. 49, S55–S60 (2011).

    Google Scholar 

  101. 101.

    Qiu, F., Fine, D. D., Wherritt, D. J., Lei, Z. & Sumner, L. W. PlantMAT: a metabolomics tool for predicting the specialized metabolic potential of a system and for large-scale metabolite identifications. Anal. Chem. 88, 11373–11383 (2016).

    Google Scholar 

  102. 102.

    Bingol, K. & Brüschweiler, R. NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J. Proteome Res. 14, 2642–2648 (2015).

    Google Scholar 

  103. 103.

    Gathungu, R. M., Kautz, R., Kristal, B. S., Bird, S. S. & Vouros, P. The integration of LC–MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spectrom. Rev. 39, 35–54 (2020).

    Google Scholar 

  104. 104.

    Kauppila, T. J., Syage, J. A. & Benter, T. Recent developments in atmospheric pressure photoionization–mass spectrometry. Mass Spectrom. Rev. 36, 423–449 (2017).

    Google Scholar 

  105. 105.

    Kondyli, A. & Schrader, W. Evaluation of the combination of different atmospheric pressure ionization sources for the analysis of extremely complex mixtures. Rapid Commun. Mass Spectrom. 34, e8676 (2020).

  106. 106.

    Nordström, A., Want, E., Northen, T., Lehtiö, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2008).

    Google Scholar 

  107. 107.

    Tugizimana, F., Steenkamp, P. A., Piater, L. A. & Dubery, I. A. Mass spectrometry in untargeted liquid chromatography/mass spectrometry metabolomics: electrospray ionisation parameters and global coverage of the metabolome. Rapid Commun. Mass Spectrom. 32, 121–132 (2018).

    Google Scholar 

  108. 108.

    Aszyk, J., Byliński, H., Namieśnik, J. & Kot-Wasik, A. Main strategies, analytical trends and challenges in LC–MS and ambient mass spectrometry-based metabolomics. Trends Anal. Chem. 108, 278–295 (2018).

    Google Scholar 

  109. 109.

    Gallagher, R. T. et al. Combined electrospray ionization–atmospheric pressure chemical ionization source for use in high-throughput LC–MS applications. Anal. Chem. 75, 973–977 (2003).

    Google Scholar 

  110. 110.

    DeFelice, B. C. et al. Mass Spectral Feature List Optimizer (MS-FLO): a tool to minimize false positive peak reports in untargeted liquid chromatography–mass spectroscopy (LC–MS) data processing. Anal. Chem. 89, 3250–3255 (2017).

    Google Scholar 

  111. 111.

    Wang, R., Yin, Y. & Zhu, Z.-J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal. Bioanal. Chem. 411, 4349–4357 (2019).

    Google Scholar 

  112. 112.

    Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015). This paper provides a great introduction to the challenges of processing DIA MS/MS data and reports development of one of the best open platforms for analysis.

    Google Scholar 

  113. 113.

    Guo, J. & Huan, T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography–mass spectrometry based untargeted metabolomics. Anal. Chem. 92, 8072–8080 (2020).

    Google Scholar 

  114. 114.

    Broeckling, C. D., Hoyes, E., Richardson, K., Brown, J. M. & Prenni, J. E. Comprehensive tandem-mass-spectrometry coverage of complex samples enabled by data-set-dependent acquisition. Anal. Chem. 90, 8020–8027 (2018).

    Google Scholar 

  115. 115.

    Trujillo, E. A., Hebert, A. S., Brademan, D. R. & Coon, J. J. Maximizing tandem mass spectrometry acquisition rates for shotgun proteomics. Anal. Chem. 91, 12625–12629 (2019).

    Google Scholar 

  116. 116.

    Mullard, G. et al. A new strategy for MS/MS data acquisition applying multiple data dependent experiments on Orbitrap mass spectrometers in non-targeted metabolomic applications. Metabolomics 11, 1068–1080 (2015).

    Google Scholar 

  117. 117.

    Olsen, J. V. et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007).

    Google Scholar 

  118. 118.

    Johnson, A. R. & Carlson, E. E. Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal. Chem. 87, 10668–10678 (2015).

    Google Scholar 

  119. 119.

    Wang, Z. & Jones, A. D. Profiling of stable isotope enrichment in specialized metabolites using liquid chromatography and multiplexed nonselective collision-induced dissociation. Anal. Chem. 86, 10600–10607 (2014).

    Google Scholar 

  120. 120.

    Shen, Y. et al. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic–peptidomic analysis: comparison of peptide identification methods. J. Proteome Res. 10, 3929–3943 (2011).

    Google Scholar 

  121. 121.

    Fenaille, F., Barbier Saint-Hilaire, P., Rousseau, K. & Junot, C. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: where do we stand? J. Chromatogr. A 1526, 1–12 (2017).

    Google Scholar 

  122. 122.

    Eliuk, S. & Makarov, A. Evolution of Orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. 8, 61–80 (2015).

    Google Scholar 

  123. 123.

    Beck, S. et al. The Impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteomics 14, 2014–2029 (2015).

    Google Scholar 

  124. 124.

    Eichhorn, P., Pérez, S. & Barceló, D. in Comprehensive Analytical Chemistry Vol. 58 (ed. Fernandez-Alba, A. R.) 217–272 (Elsevier, 2012).

  125. 125.

    Glauser, G., Veyrat, N., Rochat, B., Wolfender, J.-L. & Turlings, T. C. J. Ultra-high pressure liquid chromatography–mass spectrometry for plant metabolomics: a systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. J. Chromatogr. A 1292, 151–159 (2013).

    Google Scholar 

  126. 126.

    Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013).

    Google Scholar 

  127. 127.

    Kaufmann, A. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS. J. Mass Spectrom. 53, 725–738 (2018). A great overview of how different parameters in data acquisition can profundly affect data quality.

    Google Scholar 

  128. 128.

    Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

    Google Scholar 

  129. 129.

    Egertson, J. D. et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 10, 744–746 (2013).

    Google Scholar 

  130. 130.

    Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    Google Scholar 

  131. 131.

    Silva, J. C. et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 77, 2187–2200 (2005).

    Google Scholar 

  132. 132.

    Meier, F. et al. Parallel accumulation–serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).

    Google Scholar 

  133. 133.

    Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018).

    Google Scholar 

  134. 134.

    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Google Scholar 

  135. 135.

    Shahaf, N. et al. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun. 7, 12423 (2016).

    Google Scholar 

  136. 136.

    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Google Scholar 

  137. 137.

    Wichmann, C. et al. MaxQuant.Live enables global targeting of more than 25,000 peptides. Mol. Cell. Proteomics 18, 982–994 (2019).

    Google Scholar 

  138. 138.

    Wei, J. et al. A new reversed-phase/strong anion-exchange mixed-mode stationary phase based on polar-copolymerized approach and its application in the enrichment of aristolochic acids. J. Chromatogr. A 1246, 129–136 (2012).

    Google Scholar 

  139. 139.

    Lämmerhofer, M. et al. Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J. Sep. Sci. 31, 2572–2588 (2008).

    Google Scholar 

  140. 140.

    Qiu, H., Zhang, M., Gu, T., Takafuji, M. & Ihara, H. A sulfonic-azobenzene-grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography. Chemistry 19, 18004–18010 (2013).

    Google Scholar 

  141. 141.

    Ray, S., Takafuji, M. & Ihara, H. Chromatographic evaluation of a newly designed peptide–silica stationary phase in reverse phase liquid chromatography and hydrophilic interaction liquid chromatography: mixed mode behavior. J. Chromatogr. A 1266, 43–52 (2012).

    Google Scholar 

  142. 142.

    Lin, J., Lin, J., Lin, X. & Xie, Z. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes. J. Chromatogr. A 1216, 801–806 (2009).

    Google Scholar 

  143. 143.

    Qiao, L. et al. A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. J. Chromatogr. A 1360, 240–247 (2014).

    Google Scholar 

  144. 144.

    Li, Y. et al. Poly(basic red 9) doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors. Colloids Surf. B Biointerfaces 118, 133–139 (2014).

    Google Scholar 

  145. 145.

    Lin, X., Lin, J., Sun, Y., Li, Y. & Xie, Z. A facile versatile polymeric monolith for multiple separations. Analyst 138, 771–774 (2013).

    Google Scholar 

  146. 146.

    Zhang, P., Chen, J. & Jia, L. N-methylimidazolium-functionalized monolithic silica column for mixed-mode chromatography. J. Chromatogr. A 1218, 3459–3465 (2011).

    Google Scholar 

  147. 147.

    Yang, P., Wang, W., Xiao, X. & Jia, L. Hydrothermal preparation of hybrid carbon/silica monolithic capillary column for liquid chromatography. J. Sep. Sci. 37, 1911–1918 (2014).

    Google Scholar 

  148. 148.

    Mallik, A. K. et al. Design of C18 organic phases with multiple embedded polar groups for ultraversatile applications with ultrahigh selectivity. Anal. Chem. 87, 6614–6621 (2015).

    Google Scholar 

  149. 149.

    Brenton, A. G. & Godfrey, A. R. Accurate mass measurement: terminology and treatment of data. J. Am. Soc. Mass Spectrom. 21, 1821–1835 (2010).

    Google Scholar 

  150. 150.

    Murray, K. K. et al. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1515–1609 (2013).

    Google Scholar 

  151. 151.

    Price, P. Standard definitions of terms relating to mass spectrometry: a report from the Committee on Measurements and Standards of the American Society for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2, 336–348 (1991).

    Google Scholar 

  152. 152.

    Hecht, E. S., Scigelova, M., Eliuk, S. & Makarov, A. Fundamentals and advances of Orbitrap mass spectrometry. in Encyclopedia of Analytical Chemistry (ed. Meyers, R. A.) https://doi.org/10.1002/9780470027318.a9309.pub2 (Wiley, 2019).

  153. 153.

    Gilar, M., Daly, A. E., Kele, M., Neue, U. D. & Gebler, J. C. Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography. J. Chromatogr. A 1061, 183–192 (2004).

    Google Scholar 

  154. 154.

    Wang, X., Stoll, D. R., Schellinger, A. P. & Carr, P. W. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal. Chem. 78, 3406–3416 (2006).

    Google Scholar 

Download references

Acknowledgements

A.R.F. and S.A. are supported by the European Union’s Horizon 2020 research and innovation program, project PlantaSYST (SGA-CSA 739582 under FPA 664620). L.P.d.S. is supported by the European Union’s Horizon 2020 research and innovation program, project INCREASE (GA 862862).

Author information

Affiliations

Authors

Contributions

L.P.d.S. and A.R.F. planned and conceptualized the manuscript and wrote the first draft. L.P.d.S. created the figures. F.S. created the figures and prepared Box 1. All authors proofread, corrected and approved the final version.

Corresponding authors

Correspondence to Leonardo Perez de Souza or Alisdair R. Fernie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Methods thanks Warwick Dunn, Albert Fornace and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez de Souza, L., Alseekh, S., Scossa, F. et al. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods (2021). https://doi.org/10.1038/s41592-021-01116-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing