Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Spatially resolved transcriptomics in neuroscience

One major challenge in neuroscience is to gain a systematic understanding of the extraordinary diversity of brain cell types and how they contribute to brain function. Spatially resolved transcriptomics holds unmatched promise in unraveling the organization of brain cell types and their relationship with connectivity, circuit dynamics, behavior and disease. Here we discuss neuroscience applications of various spatially resolved transcriptomics methods, as well as technical challenges that need to be overcome to realize their full potentials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell type mapping with spatially resolved transcriptomics.
Fig. 2: Spatially resolved transcriptomics linking transcriptomic cell types with connectivity and circuit function.

References

  1. Zeng, H. & Sanes, J. R. Nat. Rev. Neurosci. 18, 530–546 (2017).

    Article  CAS  Google Scholar 

  2. Hodge, R. D. et al. Nature 573, 61–68 (2019).

    Article  CAS  Google Scholar 

  3. Lake, B. B. et al. Science 352, 1586–1590 (2016).

    Article  CAS  Google Scholar 

  4. Tasic, B. et al. Nature 563, 72–78 (2018).

    Article  CAS  Google Scholar 

  5. Zeisel, A. et al. Science 347, 1138–1142 (2015).

    Article  CAS  Google Scholar 

  6. Gouwens, N. W. et al. Cell 183, 935–953.e919 (2020).

    Article  CAS  Google Scholar 

  7. Scala, F. et al. Nature https://doi.org/10.1038/s41586-020-2907-3 (2020).

  8. Codeluppi, S. et al. Nat. Methods 15, 932–935 (2018).

    Article  CAS  Google Scholar 

  9. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Science 348, aaa6090 (2015).

    Article  Google Scholar 

  10. Moffitt, J. R. et al. Science 362, eaau5324 (2018).

    Article  Google Scholar 

  11. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article  CAS  Google Scholar 

  12. Eng, C. L. et al. Nature 568, 235–239 (2019).

    Article  CAS  Google Scholar 

  13. Shah, S., Lubeck, E., Zhou, W. & Cai, L. Neuron 92, 342–357 (2016).

    Article  CAS  Google Scholar 

  14. Qian, X. et al. Nat. Methods 17, 101–106 (2020).

    Article  CAS  Google Scholar 

  15. Wang, X. et al. Science 361, eaat5691 (2018).

    Article  Google Scholar 

  16. Maynard, K. R., Jaffe, A. E. & Martinowich, K. Neuropsychopharmacology 45, 232–233 (2020).

    Article  CAS  Google Scholar 

  17. Rodriques, S. G. et al. Science 363, 1463–1467 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, M. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.06.04.105700 (2020).

  19. BRAIN Initiative Cell Census Network (BICCN). Preprint at bioRxiv https://doi.org/10.1101/2020.10.19.343129 (2020).

  20. Xu, S. et al. Science 370, eabb2494 (2020).

    Article  CAS  Google Scholar 

  21. Kalmbach, B. E. et al. Neuron 100, 1194–1208.e1195 (2018).

    Article  CAS  Google Scholar 

  22. Chen, W. T. et al. Cell 182, 976–991.e919 (2020).

    Article  CAS  Google Scholar 

  23. Chen, X. et al. Cell 179, 772–786.e719 (2019).

    Article  CAS  Google Scholar 

  24. Petukhov, V., Soldatov, R. A., Khodosevich, K. & Kharchenko, P. V. Preprint at bioRxiv https://doi.org/10.1101/2020.10.05.326777 (2020).

  25. Chen, F. et al. Nat. Methods 13, 679–684 (2016).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Allen Institute for Brain Science and by grant U19MH114830 from the National Institute of Mental Health to H.Z. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH and its subsidiary institutes. The authors wish to thank the Allen Institute founder, Paul G. Allen, for his vision, encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkui Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Close, J.L., Long, B.R. & Zeng, H. Spatially resolved transcriptomics in neuroscience. Nat Methods 18, 23–25 (2021). https://doi.org/10.1038/s41592-020-01040-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-01040-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing