Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Spatially resolved transcriptomics adds a new dimension to genomics

Subjects

As single-cell omics continue to advance, the field of spatially resolved transcriptomics has emerged with a set of experimental and computational methods to map out the positions of cells and their gene expression profiles in space. Here we summarize current transcriptome-wide and sequencing-based methodologies and their applications in genomics research.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental and computational methods for sequencing-based spatial transcriptomics.
Fig. 2

References

  1. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  Google Scholar 

  2. Browaeys, R., Saelens, W. & Saeys, Y. Nat. Methods 17, 159–162 (2020).

    Article  CAS  Google Scholar 

  3. Ståhl, P. L. et al. Science 353, 78–82 (2016).

    Article  Google Scholar 

  4. 10x Genomics. User guide: Visium spatial gene expression reagent kits, Document CG000239 Rev C (10x Genomics, 2020).

  5. Rodriques, S. G. et al. Science 363, 1463–1467 (2019).

    Article  CAS  Google Scholar 

  6. Vickovic, S. et al. Nat. Methods 16, 987–990 (2019).

    Article  CAS  Google Scholar 

  7. Gunderson, K. L. et al. Genome Res. 14, 870–877 (2004).

    Article  CAS  Google Scholar 

  8. Stickels, R.R. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0739-1 (2020).

  9. Michael, K. L., Taylor, L. C., Schultz, S. L. & Walt, D. R. Anal. Chem. 70, 1242–1248 (1998).

    Article  CAS  Google Scholar 

  10. Asp, M. et al. Cell 179, 1647–1660.e19 (2019).

    Article  CAS  Google Scholar 

  11. Ke, R. et al. Nat. Methods 10, 857–860 (2013).

    Article  CAS  Google Scholar 

  12. Ortiz, C. et al. Sci. Adv. 6, eabb3446 (2020).

    Article  CAS  Google Scholar 

  13. Rood, J. E. et al. Cell 179, 1455–1467 (2019).

    Article  CAS  Google Scholar 

  14. Maniatis, S. et al. Science 364, 89–93 (2019).

    Article  CAS  Google Scholar 

  15. Chen, W. T. et al. Cell 182, 976–991.e19 (2020).

    Article  CAS  Google Scholar 

  16. Berglund, E. et al. Nat. Commun. 9, 2419 (2018).

    Article  Google Scholar 

  17. Moncada, R. et al. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  Google Scholar 

  18. Ji, A. L. et al. Cell 182, 1661–1662 (2020).

    Article  CAS  Google Scholar 

  19. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. Nat. Commun. 11, 4025 (2020).

    Article  CAS  Google Scholar 

  20. Lebrigand, K. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.252296 (2020).

  21. Vickovic, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.10.14.338418 (2020).

  22. Liu, Y. et al. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  Google Scholar 

  23. Bergenstråhle, L. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.02.28.963413 (2020).

  24. He, B. et al. Nat. Biomed. Eng. 4, 827–834 (2020).

    Article  CAS  Google Scholar 

  25. Bergenstråhle, J., Larsson, L. & Lundeberg, J. BMC Genomics 21, 482 (2020).

    Article  Google Scholar 

  26. Wolf, F. A., Angerer, P. & Theis, F. J. Genome Biol. 19, 15 (2018).

    Article  Google Scholar 

  27. Stuart, T. et al. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  Google Scholar 

  28. Andersson, A. et al. Commun. Biol. 3, 565 (2020).

    Article  Google Scholar 

  29. Biancalani, T. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.08.29.272831 (2020).

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.L. and J.L. wrote the manuscript with input from J.F.

Corresponding author

Correspondence to Joakim Lundeberg.

Ethics declarations

Competing interests

J.L., J.F. and L.L. are scientific consultants to 10x Genomics Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods 18, 15–18 (2021). https://doi.org/10.1038/s41592-020-01038-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-01038-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing