Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum computing at the frontiers of biological sciences

Computing plays a critical role in the biological sciences but faces increasing challenges of scale and complexity. Quantum computing, a computational paradigm exploiting the unique properties of quantum mechanical analogs of classical bits, seeks to address many of these challenges. We discuss the potential for quantum computing to aid in the merging of insights across different areas of biological sciences.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Concepts in quantum computing.
Fig. 2: Complexity of linking levels of analyses from genetics to human behavior.

References

  1. 1.

    Mohseni, M. et al. Nature 543, 171–174 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Arute, F. et al. Nature 574, 505–510 (2019).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    U.S. House of Representatives. 115th Congress. H.R. 6227, U.S. National Quantum Initiative Act (Government Printing Office, 2018).

  4. 4.

    Monroe, C., Raymer, M. G. & Taylor, J. Science 364, 440–442 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Thew, R., Jennewein, T. & Sasaki, M. Quantum Sci. Technol. 5, 010201 (2019).

    Article  Google Scholar 

  6. 6.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  7. 7.

    Alexeev, Y. et al. Quantum computer systems for scientific discovery. Preprint at https://arxiv.org/abs/1912.07577 (2019).

  8. 8.

    Durr, C. & Hoyer, P. A quantum algorithm for finding the minimum. Preprint at https://arxiv.org/abs/quant-ph/9607014 (1996).

  9. 9.

    Brassard, G., Høyer, P., Mosca, M. & Tapp, A. in Contemporary Mathematics: Quantum Computation and Information (eds. Lomonaco, S. J. & Brandt, H. E.) 53–74 (American Mathematical Society, 2002).

  10. 10.

    Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Phys. Rev. Lett. 81, 5442–5444 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    Li, Z., Li, J., Dattani, N. S., Umrigar, C. J. & Chan, G. K. L. J. Chem. Phys. 150, 024302 (2019).

    Google Scholar 

  12. 12.

    Grover, L. K. in Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996).

  13. 13.

    Ambainis, A. & Kokainis, M. in Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing – STOC 2017 989–1002 (2017).

  14. 14.

    Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).

  15. 15.

    Kadowaki, T. & Nishimori, H. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58, 5355–5363 (1998).

    CAS  Google Scholar 

  16. 16.

    Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  17. 17.

    Harrow, A. W. Small quantum computers and large classical data sets. Preprint at https://arxiv.org/abs/2004.00026 (2020).

  18. 18.

    Giovannetti, V., Lloyd, S. & Maccone, L. Phys. Rev. Lett. 100, 160501 (2008).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Arunachalam, S. & de Wolf, R. ACM SIGACT News 48, 41–67 (2017).

    Article  Google Scholar 

  20. 20.

    Li, H. & Homer, N. Brief. Bioinform. 11, 473–483 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Monras, A., Beige, A. & Wiesner, K. Hidden quantum Markov models and non-adaptive read-out of many-body states. Preprint at https://arxiv.org/abs/1002.2337 (2010).

  22. 22.

    Srinivasan, S., Downey, C. & Boots, B. in Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 10338–10347 (Curran Associates, 2018).

  23. 23.

    Li, H. & Durbin, R. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Dobin, A. et al. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Ramesh, H. & Vinay, V. J. Discrete Algorithms 1, 103–110 (2003).

    Article  Google Scholar 

  26. 26.

    Montanaro, A. Algorithmica 77, 16–39 (2017).

    Article  Google Scholar 

  27. 27.

    Howie, B. N., Donnelly, P. & Marchini, J. PLoS Genet. 5, e1000529 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    McConnell, M. J. et al. Science 356, eaal1641 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Kathuria, K., Ratan, A., McConnell, M. & Bekiranov, S. Quantum Mach. Intell. 2, 7 (2020).

    PubMed Central  Article  PubMed  Google Scholar 

  30. 30.

    Griffiths, R.C. & Marjoram, P. in Progress in Population Genetics and Human Evolution 257–270 (Springer, 1997).

  31. 31.

    Li, H. & Durbin, R. Nature 475, 493–496 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Harrow, A. W., Hassidim, A. & Lloyd, S. Phys. Rev. Lett. 103, 150502 (2009).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Wiebe, N., Braun, D. & Lloyd, S. Phys. Rev. Lett. 109, 050505 (2012).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Li, R. Y., Di Felice, R., Rohs, R. & Lidar, D. A. NPJ Quantum Inf. 4, 14 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Gamazon, E. R. et al. Nat. Genet. 47, 1091–1098 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Wang, D. et al. Science 362, eaat8464 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Robinson, R. W. in Combinatorial Mathematics V. Lecture Notes in Mathematics, Vol. 622 (ed. Little, C. H. C.) 28–43 (Springer, 1977).

  39. 39.

    Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Phys. Rev. X 8, 021050 (2018).

    CAS  Google Scholar 

  40. 40.

    Khoshaman, A., Vinci, W., Denis, B., Andriyash, E. & Amin, M. H. Quantum Sci. Technol. 4, 014001 (2019).

    Article  Google Scholar 

  41. 41.

    Zhang, B. & Horvath, S. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).

    Article  Google Scholar 

  42. 42.

    O’Malley, D., Vesselinov, V. V., Alexandrov, B. S. & Alexandrov, L. B. PLoS One 13, e0206653 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Fischl, B. Neuroimage 62, 774–781 (2012).

    PubMed  Article  Google Scholar 

  44. 44.

    Reinen, J. M. et al. Nat. Commun. 9, 1157 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Demirtaş, M. et al. Neuron 101, 1181–1194.e13 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Deco, G. et al. J. Neurosci. 34, 7886–7898 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Deco, G., Senden, M. & Jirsa, V. Front. Comput. Neurosci. https://doi.org/10.3389/fncom.2012.00068 (2012).

  48. 48.

    Childs, A. M. & Liu, J.-P. Commun. Math. Phys. 375, 1427–1457 (2020).

    Article  Google Scholar 

  49. 49.

    Berry, D. W., Childs, A. M., Ostrander, A. & Wang, G. Commun. Math. Phys. 356, 1057–1081 (2017).

    Article  Google Scholar 

  50. 50.

    Leyton, S. K. & Osborne, T. J. A quantum algorithm to solve nonlinear differential equations. Preprint at https://arxiv.org/abs/0812.4423v1 (2008).

  51. 51.

    Dezfouli, A., Morris, R., Ramos, F., Dayan, P. & Balleine, B. W. in Adv. Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 4228–4237 (Curran Associates, 2018).

  52. 52.

    Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

  53. 53.

    Havlíček, V. et al. Nature 567, 209–212 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  54. 54.

    National Academies of Sciences, Engineering and Medicine. Quantum Computing: Progress and Prospects. https://doi.org/10.17226/25196 (2019).

  55. 55.

    Schuld, M. & Killoran, N. Phys. Rev. Lett. 122, 040504 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Schuld, M., Fingerhuth, M. & Petruccione, F. Europhys. Lett. 119, 60002 (2017).

    Article  CAS  Google Scholar 

  57. 57.

    Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Phys. Rev. A (Coll. Park) 101, 032308 (2020).

    CAS  Article  Google Scholar 

  58. 58.

    Lambert, N. et al. Nat. Phys. 9, 10–18 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Tegmark, M. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61, 4194–4206 (2000).

    CAS  PubMed  Google Scholar 

  60. 60.

    Marr, D. C. & Poggio, T. Neurosci. Res. Program Bull. 15, 470–488 (1977).

    Google Scholar 

  61. 61.

    Van Meter, R., Itoh, K. M. & Ladd, T. D. in MS+S 2006 – Controllable Quantum States: Mesoscopic Superconductivity and Spintronics, Proceedings of the International Symposium 183–188 (World Scientific Publishing, 2008).

  62. 62.

    Foss-Feig, J. H. et al. Biol. Psychiatry 81, 848–861 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Outeiral, C. et al. WIREs Comput. Mol. Sci. e1481 (2020).

  64. 64.

    Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G. & Aspuru-Guzik, A. Sci. Rep. 2, 571 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Kandala, A. et al. Nature 549, 242–246 (2017).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Dorner, R., Goold, J. & Vedral, V. Interface Focus 2, 522–528 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work is a product of discussions initiated during a NIMH-convened virtual workshop, addressing computational challenges in genomics and neuroscience via massively parallel computing and QC (https://www.nimh.nih.gov/news/events/2018/virtual-workshop-solving-computational-challenges-in-genomics-and-neuroscience-via-parallel-and-quantum-computing.shtml). We would also like to acknowledge the help and support of Lora Bingaman of the NIMH in overseeing the administration of this collaboration. M.B.G. acknowledges the support of NIH grant MH116492-03S1.

Author information

Affiliations

Authors

Contributions

All authors contributed to discussions on the design of the manuscript. G. Senthil and T.L. led the NIMH workshop and subsequent discussions. P.S.E., J.W., A.A., S.B., M.G., M.J.M., J.T.B., M.B.G. and A.W.H wrote the manuscript. P.S.E., J.W., A.A., S.B., M.G., M.J.M., G. Sapiro, A.A.-G., J.D.M., J.T.B., M.B., S.N.S., G. Senthil, T.L., M.B.G. and A.W.H edited the manuscript. A.W.H. and S.B. contributed to the “Classical versus quantum circuits: state of the art” section. P.S.E., J.W., S.B., M.G., M.J.M., M.B.G. contributed content to the “Sequence analysis,” “Genetics,” “Functional genomics” and “Integration across disciplines” subsections, and A.A., G. Sapiro, J.T.B., J.W. and J.M. to the “Mapping neurobehavioral variation via neuroimaging and deep phenotyping” subsection. S.B. contributed to the Epilogue section.

Corresponding authors

Correspondence to Thomas Lehner, Mark B. Gerstein or Aram W. Harrow.

Ethics declarations

Competing interests

A.A. serves as a member of the Scientific Advisory Board of, consults for, has received grants from, and holds equity in BlackThorn Therapeutics. G. Sapiro consulted for Apple, Volvo, Restore3D and SIS, and has received speaking fees from Johnson & Johnson. J.T.B. has received consulting fees from BlackThorn Therapeutics, Niraxx Therapeutics, Verily Life Sciences, AbleTo Inc. and Pear Therapeutics, and has received consulting fees and equity from Mindstrong Inc. J.D.M. consults for, has received grants from, and holds equity in BlackThorn Therapeutics. A.W.H. has recently joined the Scientific Advisory Board of Zapata Computing, from which he expects income and equity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emani, P.S., Warrell, J., Anticevic, A. et al. Quantum computing at the frontiers of biological sciences. Nat Methods 18, 701–709 (2021). https://doi.org/10.1038/s41592-020-01004-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing