Computational methods for single-cell omics across modalities

Single-cell omics approaches provide high-resolution data on cellular phenotypes, developmental dynamics and communication networks in diverse tissues and conditions. Emerging technologies now measure different modalities of individual cells, such as genomes, epigenomes, transcriptomes and proteomes, in addition to spatial profiling. Combined with analytical approaches, these data open new avenues for accurate reconstruction of gene-regulatory and signaling networks driving cellular identity and function. Here we summarize computational methods for analysis and integration of single-cell omics data across different modalities and discuss their applications, challenges and future directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Stuart, T. et al. Cell 177, 1888–1902.e21 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Welch, J. D. et al. Cell 177, 1873–1887.e17 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Lopez, R. et al. A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements. Preprint at arXiv https://arxiv.org/abs/1905.02269 (2019).

  4. 4.

    Kester, L. & van Oudenaarden, A. Cell Stem Cell 23, 166–179 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Ludwig, L. S. et al. Cell 176, 1325–1339.e22 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Xu, J. et al. eLife 8, e45105 (2019).

    Article  Google Scholar 

  7. 7.

    McCarthy, D. J. et al. Cardelino: integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants. Preprint at bioRxiv https://doi.org/10.1101/413047 (2018).

  8. 8.

    Satpathy, A. T. et al. Nat. Med. 24, 580–590 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Preprint at bioRxiv https://doi.org/10.1101/630996 (2018).

  10. 10.

    Aibar, S. et al. Nat. Methods 14, 1083–1086 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Hainer, S. J., Bošković, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Cell 177, 1319–1329.e11 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Welch, J. D., Hartemink, A. J. & Prins, J. F. Genome Biol. 18, 138 (2017).

    Article  Google Scholar 

  13. 13.

    Burdziak, C., Azizi, E., Prabhakaran, S. & Pe’er, D. A nonparametric multi-view model for estimating cell type-specific gene regulatory networks. Preprint at arXiv https://arxiv.org/abs/1902.08138 (2019).

  14. 14.

    Henriksson, J. Single Cell Methods.: Methods. Mol. Biol. 1979, 395–406 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Krishnaswamy, S. et al. Science 346, 1250689 (2014).

    Article  Google Scholar 

  16. 16.

    Qin, X. et al. Single-cell signalling analysis of heterocellular organoids. Preprint at bioRxiv https://doi.org/10.1101/659896 (2019).

  17. 17.

    Stoeckius, M. et al. Nat. Methods 14, 865–868 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Peterson, V. M. et al. Nat. Biotechnol. 35, 936–939 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Gayoso, A. et al. A joint model of RNA expression and surface protein abundance in single cells. Preprint at bioRxiv https://doi.org/10.1101/791947 (2019).

  20. 20.

    Markowetz, F., Kostka, D., Troyanskaya, O. G. & Spang, R. Bioinformatics 23, i305–i312 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Pirkl, M. & Beerenwinkel, N. Bioinformatics 34, i964–i971 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Mayr, U., Serra, D. & Liberali, P. Development 146, dev176727 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Halpern, K. B. et al. Nature 542, 352–356 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Karaiskos, N. et al. The Drosophila embryo at single cell transcriptome resolution. Science 358, 194–199 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Achim, K. et al. Nat. Biotechnol. 33, 503–509 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB v2.0: inferring cell-cell communication from combined expression of multi-subunit receptor-ligand complexes. Preprint at bioRxiv https://doi.org/10.1101/680926 (2019).

  28. 28.

    Colomé-Tatché, M. & Theis, F. J. Curr. Opin. Syst. Biol. 7, 54–59 (2018).

    Article  Google Scholar 

  29. 29.

    Packer, J. & Trapnell, C. Trends Genet. 34, 653–665 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Argelaguet, R. et al. MOFA: a probabilistic framework for comprehensive integration of structured single-cell data. Preprint at bioRxiv https://doi.org/10.1101/837104 (2019).

Download references

Acknowledgements

We thank E. Dann and M. Sarkin Jain for careful and critical reading of the manuscript. We are grateful to J. Eliasova for help with the illustrations.

Author information

Affiliations

Authors

Contributions

M.E and S.A.T wrote the manuscript.

Corresponding author

Correspondence to Sarah A. Teichmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efremova, M., Teichmann, S.A. Computational methods for single-cell omics across modalities. Nat Methods 17, 14–17 (2020). https://doi.org/10.1038/s41592-019-0692-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing