All the light that we can see: a new era in miniaturized microscopy

One major challenge in neuroscience is to uncover how defined neural circuits in the brain encode, store, modify, and retrieve information. Meeting this challenge comprehensively requires tools capable of recording and manipulating the activity of intact neural networks in naturally behaving animals. Head-mounted miniature microscopes are emerging as a key tool to address this challenge. Here we discuss recent work leading to the miniaturization of neural imaging tools, the current state of the art in this field, and the importance and necessity of open-source options. We finish with a discussion on what the future may hold for miniature microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Open-source UCLA Miniscope.

References

  1. 1.

    Morris, R. J. Neurosci. Methods 11, 47–60 (1984).

    CAS  Article  Google Scholar 

  2. 2.

    Pellow, S., Chopin, P., File, S. E. & Briley, M. J. Neurosci. Methods 14, 149–167 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    Denk, W. & Svoboda, K. Neuron 18, 351–357 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Neuron 37, 311–322 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Jun, J. J. et al. Nature 551, 232–236 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Rector, D. & Harper, R. Behav. Brain Res. 42, 143–149 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    Rector, D. M., Poe, G. R., Redgrave, P. & Harper, R. M. J. Neurosci. Methods 78, 85–91 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    Ferezou, I., Bolea, S. & Petersen, C. C. H. Neuron 50, 617–629 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Engelbrecht, C. J., Johnston, R. S., Seibel, E. J. & Helmchen, F. Opt. Express 16, 5556–5564 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Piyawattanametha, W. et al. Opt. Lett. 34, 2309–2311 (2009).

    Article  Google Scholar 

  12. 12.

    Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. Neuron 31, 903–912 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    Sawinski, J. et al. Proc. Natl Acad. Sci. USA 106, 19557–19562 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Tian, L. et al. Nat. Methods 6, 875–881 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Ghosh, K. K. et al. Nat. Methods 8, 871–878 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Park, J. H. et al. J. Neurosci. Methods 201, 290–295 (2011).

    Article  Google Scholar 

  17. 17.

    Cai, D. J. et al. Nature 534, 115–118 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Liberti, W. A., Perkins, L. N., Leman, D. P. & Gardner, T. J. J. Neural Eng. 14, 045001 (2017).

    Article  Google Scholar 

  19. 19.

    Jacob, A. D. et al. Curr. Protoc. Neurosci. 84, e51 (2018).

    Article  Google Scholar 

  20. 20.

    Zhang, L. et al. Curr. Protoc. Neurosci. https://doi.org/10.1002/cpns.56 (2018).

    Article  Google Scholar 

  21. 21.

    Szabo, V., Ventalon, C., De Sars, V., Bradley, J. & Emiliani, V. Neuron 84, 1157–1169 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Zong, W. et al. Nat. Methods 14, 713–719 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Ozbay, B. N. et al. Sci. Rep. 8, 8108 (2018).

    Article  Google Scholar 

  24. 24.

    Wang, X. et al. Cell 171, 440–455 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Murugan, M. et al. Cell 171, 1663–1677 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Yu, X. et al. Neuron 99, 1170–1187 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Siegle, J. H. et al. J. Neural Eng. 14, 045003 (2017).

    Article  Google Scholar 

  28. 28.

    Shuman, T. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/06/29/358580 (2018).

  29. 29.

    Skocek, O. et al. Nat. Methods 15, 429–432 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Scott, B. B. et al. Neuron 100, 1045–1058 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Abdelfattah, A. S. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/06/436840 (2018).

  32. 32.

    Hochbaum, D. R. et al. Nat. Methods 11, 825–833 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Giovannucci, A. et al. In Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 2381–2391 (Curran Associates, Red Hook, NY, 2017).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Aharoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aharoni, D., Khakh, B.S., Silva, A.J. et al. All the light that we can see: a new era in miniaturized microscopy. Nat Methods 16, 11–13 (2019). https://doi.org/10.1038/s41592-018-0266-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing