Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A comparison of methods to assess cell mechanical properties

Abstract

The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Description of rheological tests.
Fig. 2: AFM measurements.
Fig. 3: Whole-cell deformation measurements.
Fig. 4: Cell monolayer rheology.
Fig. 5: Bead-based measurements.

References

  1. 1.

    Lautenschläger, F. et al. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. USA 106, 15696–15701 (2009).

    Article  PubMed  Google Scholar 

  2. 2.

    Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Phillip, J. M., Aifuwa, I., Walston, J. & Wirtz, D. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17, 113–141 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Briscoe, B. J., Sebastian, K. S. & Adams, M. J. The effect of indenter geometry on the elastic response to indentation. J. Phys. D Appl. Phys. 27, 1156–1162 (1994).

    Article  CAS  Google Scholar 

  8. 8.

    Staunton, J. R., Doss, B. L., Lindsay, S. & Ros, R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6, 19686 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Hertz, H. Über den Kontakt elastischer Körper. J. Reine Angew Math. 92, 156–171 (1881).

    Google Scholar 

  10. 10.

    Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997).

    PubMed  CAS  Google Scholar 

  11. 11.

    Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. & Käs, J. Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Chalut, K. J., Ekpenyong, A. E., Clegg, W. L., Melhuish, I. C. & Guck, J. Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integr. Biol. (Camb.) 4, 280–284 (2012).

    Article  CAS  Google Scholar 

  14. 14.

    Boyde, L., Chalut, K. J. & Guck, J. Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26, 1814–1826 (2009).

    Article  PubMed  Google Scholar 

  15. 15.

    Remmerbach, T. W. et al. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Fernández, P., Heymann, L., Ott, A., Aksel, N. & Pullarkat, P. A. Shear rheology of a cell monolayer. New J. Phys. 9, 419 (2007).

    Article  CAS  Google Scholar 

  17. 17.

    Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Wu, P. H. et al. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155–170 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Dokukin, M. E., Guz, N. V. & Sokolov, I. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments. Biophys. J. 104, 2123–2131 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Kollmannsberger, P. & Fabry, B. High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum. 78, 114301 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl. Acad. Sci. USA 106, 18243–18248 (2009).

    Article  PubMed  Google Scholar 

  23. 23.

    Mitrossilis, D. et al. Real-time single-cell response to stiffness. Proc. Natl. Acad. Sci. USA 107, 16518–16523 (2010).

    Article  PubMed  Google Scholar 

  24. 24.

    Dokukin, M. E. & Sokolov, I. On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth. Macromolecules 45, 4277–4288 (2012).

    Article  CAS  Google Scholar 

  25. 25.

    Poh, Y. C. et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5, 4000 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Guz, N., Dokukin, M., Kalaparthi, V. & Sokolov, I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Sokolov, I., Iyer, S., Subba-Rao, V., Gaikwad, R. M. & Woodworth, C. D. Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl. Phys. Lett. 91, 023902 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    Sokolov, I., Dokukin, M. E. & Guz, N. V. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 60, 202–213 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Simon, M. et al. Load rate and temperature dependent mechanical properties of the cortical neuron and its pericellular layer measured by atomic force microscopy. Langmuir 32, 1111–1119 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Hale, C. M., Sun, S. X. & Wirtz, D. Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 4, e7054 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Vahabi, M. et al. Elasticity of fibrous networks under uniaxial prestress. Soft Matter 12, 5050–5060 (2016).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Perepelyuk, M. et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS One 11, e0146588 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Pogoda, K. et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16, 075002 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012).

    Article  PubMed  Google Scholar 

  38. 38.

    Byun, S. et al. Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. USA 110, 7580–7585 (2013).

    Article  PubMed  Google Scholar 

  39. 39.

    Lange, J. R. et al. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys. J. 109, 26–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Mietke, A. et al. Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys. J. 109, 2023–2036 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal. 9, rs5 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Ebert, S., Travis, K., Lincoln, B. & Guck, J. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt. Express 15, 15493–15499 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Savin, T. & Doyle, P. S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Wu, P. H., Arce, S. H., Burney, P. R. & Tseng, Y. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96, 5103–5111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Wong, W. P. & Halvorsen, K. The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt. Express 14, 12517–12531 (2006).

    Article  PubMed  Google Scholar 

  48. 48.

    Desprat, N., Richert, A., Simeon, J. SpringerAmpamp; Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Physical Sciences–Oncology Centers Network. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3, 1449 (2013).

    Article  CAS  Google Scholar 

  50. 50.

    Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68, 041914 (2003).

    Article  CAS  Google Scholar 

  51. 51.

    Desprat, N., Guiroy, A. SpringerAmpamp; Asnacios, A. Microplates-based rheometer for a single living cell. Rev. Sci. Instrum. 77, 055111 (2006).

    Article  CAS  Google Scholar 

  52. 52.

    Wottawah, F. et al. Optical rheology of biological cells. Phys. Rev. Lett. 94, 098103 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Wang, N. & Ingber, D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66, 2181–2189 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Fabry, B. et al. Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91, 986–994 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Wang, N. & Ingber, D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73, 327–335 (1995).

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Wang, N., Planus, E., Pouchelet, M., Fredberg, J. J. & Barlovatz-Meimon, G. Urokinase receptor mediates mechanical force transfer across the cell surface. Am. J. Physiol. 268, C1062–C1066 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B. & Fredberg, J. J. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93, 1429–1436 (2002).

    Article  PubMed  Google Scholar 

  59. 59.

    Mason, T. G., Ganesan, K., van Zanten, J. H., Wirtz, D. & Kuo, S. C. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79, 3282–3285 (1997).

    Article  CAS  Google Scholar 

  60. 60.

    Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. & Hutchison, C. J. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J. Cell Biol. 178, 897–904 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. 61.

    Sokolov, I. Atomic force microscopy in cancer cell research. In Cancer Nanotechnology (eds. Nalwa, H. S. & Webster, T.) Chapter 1 (American Scientific Publishers, Valencia, CA, 2007).

  62. 62.

    Berdyyeva, T. K., Woodworth, C. D. & Sokolov, I. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys. Med. Biol. 50, 81–92 (2005).

    Article  PubMed  Google Scholar 

  63. 63.

    Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Butt, H. J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH (grants U54CA143868 and R01CA174388 to D.W. and P.-H.W.; GM072744 to N.W.; GM096971 and CA193417 to P.A.J.; and CA143862 to R.R.), the NSF (grant 1510700 to R.R.), Agence Nationale de la Recherche (“ImmunoMeca” ANR-12-BSV5-0007-01, “Initiatives d’excellence” Idex ANR-11-IDEX-0005-02, and “Labex Who Am I?” ANR-11-LABX-0071 to A.A.), and the Deutsche Forschungsgemeinschaft through the collaborative research center (SFB1027 to A.O.).

Author information

Affiliations

Authors

Contributions

A.A., J.G., P.A.J., A.O., R.R., I.S., N.W., D.W., J.S.H.L., and N.M.M. designed the study. P.-H.W., D.R.-B.A., W.-C.C., M.E.D., B.L.D., P.D.-S., A.E., N.V.G., Y.-C.P., M.S., J.R.S., and G.W. performed the experiments and analysis. P.-H.W., A.A., J.G., P.A.J., A.O., R.R., I.S., N.W., and D.W. wrote the manuscript.

Corresponding authors

Correspondence to Pei-Hsun Wu, Atef Asnacios, Jochen Guck, Paul A. Janmey, Albrecht Ott, Robert Ros, Igor Sokolov, Ning Wang or Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Relaxation and creep functions of individual cells with the parallel-plate rheometer.

a, Typical creep function obtain for MCF 7 cell. b, Typical relaxation function obtain for MCF 7 cell. c, diagram representing the mean of the extensional modulus at 1Hz obtain for the different tests performed on MCF 7 cells with the parallel plates technique. (n=18 for the oscillation test, n=15 for the relaxation test, n =11 for the creep test). d, mean of the exponent of the power law found for the corresponding rheological tests in c. Error bars are standard errors.

Supplementary Figure 2 Further analysis and details of OS results.

a Distribution of initial compliance Jo for each MCF7 cell stretched (n = 514), based on the power law model. The dotted line represents the cumulative distribution. b Distribution of the power law exponent β. The average β here was found to be 0.85 ± 0.03. c. Average compliance curve for 11 MCF7 cells stretched using 1.5 W per fibre, showing more typical viscoelastic features than the cells stretched at 0.7 W per fibre as in the main text. d Distribution of the average refractive index obtained for 89 cells. Here, the population average is 1.374 ± 0.002.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Notes 1–3 and Supplementary Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, PH., Aroush, D.RB., Asnacios, A. et al. A comparison of methods to assess cell mechanical properties. Nat Methods 15, 491–498 (2018). https://doi.org/10.1038/s41592-018-0015-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing