Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Reconsidering the role of protein glycation in disease

Protein glycation has long-been considered a toxic consequence of carbohydrate metabolism. Yet recent evidence demonstrates tight regulation for these non-enzymatic post-translational modifications, pointing to a broader role in cell biology rather than simply serving as a biomarker for toxicity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic sources of protein glycation.
Fig. 2: Methylglyoxal metabolism.
Fig. 3: Towards relevant study designs in protein glycation.

References

  1. Vistoli, G. et al. Free Radic. Res 47, 3–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Kold-Christensen, R. & Johannsen, M. Trends Endocrinol. Metab. 31, 81–92 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Moellering, R. E. & Cravatt, B. F. Science 341, 549–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maksimovic, I., Zheng, Q., Trujillo, M. N., Galligan, J. J. & David, Y. J. Am. Chem. Soc. 142, 9999–10007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galligan, J. J. et al. Proc. Natl Acad. Sci. USA 115, 9228–9233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaffney, D. O. et al. Cell Chem. Biol. 27, 206–213 e206 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Rabbani, N., Ashour, A. & Thornalley, P. J. Glycoconj. J. 33, 553–568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sies, H. et al. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Kalapos, M. P. Toxicol. Lett. 110, 145–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. He, Y. et al. Biomed. Pharmacother. 131, 110663 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Thornalley, P. J. et al. Diabetes Res. Clin. Pract. 7, 115–120 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Schumacher, D. et al. Mol. Metab. 18, 143–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rabbani, N., Xue, M. & Thornalley, P. J. Clin. Sci. (Lond) 130, 1677–1696 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Krautwald, M. & Munch, G. Exp. Gerontol. 45, 744–751 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Bierhaus, A. et al. Nat. Med. 18, 926–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Nokin, M. J. et al. Sci. Rep. 7, 11722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wan, N. et al. Nat. Methods 19, 854–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, Q. et al. Nat. Commun. 10, 1289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, D. et al. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bollong, M. J. et al. Nature 562, 600–604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanghvi, V. R. et al. Cell 178, 807–819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nokin, M. J. et al. Elife 5, e19375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Distler, M. G. et al. J. Clin. Invest 122, 2306–2315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barkley-Levenson, A. M., Lee, A. & Palmer, A. A. Brain Sci. 11, 127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, Q., Jacob-Dolan, J. W. & Scheck, R. A. Biochemistry 62, 1181–1190 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants (T32 GM008804, for M.N.T. and R35 GM137910, R01 DK133196 for J.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Galligan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Yael David, Mogens Johannsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo, M.N., Galligan, J.J. Reconsidering the role of protein glycation in disease. Nat Chem Biol 19, 922–927 (2023). https://doi.org/10.1038/s41589-023-01382-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01382-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing