Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity

An Author Correction to this article was published on 01 December 2023

This article has been updated

Abstract

Compact CRISPR-Cas systems offer versatile treatment options for genetic disorders, but their application is often limited by modest gene-editing activity. Here we present enAsCas12f, an engineered RNA-guided DNA endonuclease up to 11.3-fold more potent than its parent protein, AsCas12f, and one-third of the size of SpCas9. enAsCas12f shows higher DNA cleavage activity than wild-type AsCas12f in vitro and functions broadly in human cells, delivering up to 69.8% insertions and deletions at user-specified genomic loci. Minimal off-target editing is observed with enAsCas12f, suggesting that boosted on-target activity does not impair genome-wide specificity. We determine the cryo-electron microscopy (cryo-EM) structure of the AsCas12f–sgRNA–DNA complex at a resolution of 2.9 Å, which reveals dimerization-mediated substrate recognition and cleavage. Structure-guided single guide RNA (sgRNA) engineering leads to sgRNA-v2, which is 33% shorter than the full-length sgRNA, but with on par activity. Together, the engineered hypercompact AsCas12f system enables robust and faithful gene editing in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering AsCas12f for increased genome-editing efficiency.
Fig. 2: Genome editing facilitated by engineered AsCas12f systems.
Fig. 3: Cryo-EM structure of the AsCas12f–sgRNA–DNA complex.
Fig. 4: Structure-guided engineering of the AsCas12f gRNA.
Fig. 5: Genome-wide specificity of WT and engineered AsCas12f.

Similar content being viewed by others

Data availability

Sequencing data are available at the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) under accession number GSE211600 and the Sequence Read Archive (SRA) under accession number PRJNA962057. Cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB, https://www.ebi.ac.uk/emdb) under accession code EMD-27801. The atomic model has been deposited to the Protein Data Bank (PDB, https://www.rcsb.org) under accession code 8DZJ.

Change history

References

  1. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Terns, M. P. CRISPR-based technologies: impact of RNA-targeting systems. Mol. Cell 72, 404–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, X.-M., Zhou, J., Mao, Y., Ji, Q. & Qian, S.-B. Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hampton, T. With first CRISPR trials, gene editing moves toward the clinic. JAMA 323, 1537–1539 (2020).

    Article  PubMed  Google Scholar 

  14. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Koonin, E. V. & Makarova, K. S. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 20, e3001481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wright, A. V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl Acad. Sci. USA 112, 2984–2989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Chew, W. L. et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karvelis, T. et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, H. J., Kim, H. J. & Lee, S. J. Miniature CRISPR-Cas12f1-mediated single-nucleotide microbial genome editing using 3′-truncated sgRNA. CRISPR J. 6, 52–61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kapitonov, V. V., Makarova, K. S. & Koonin, E. V. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J. Bacteriol. 198, 797–807 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  34. Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato, K. et al. Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9. Nat. Commun. 13, 6719 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirano, S. et al. Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Nature 610, 575–581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schuler, G., Hu, C. & Ke, A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science 376, 1476–1481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeda, S. N. et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell 81, 558–570.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Xiao, R., Li, Z., Wang, S., Han, R. & Chang, L. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease. Nucleic Acids Res. 49, 4120–4128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kong, X. et al. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14, 2046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, Z. et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, D. Y. et al. Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nat. Chem. Biol. 18, 1005–1013 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Marcovitz, A. & Levy, Y. Frustration in protein–DNA binding influences conformational switching and target search kinetics. Proc. Natl Acad. Sci. USA 108, 17957–17962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xin, C. et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat. Commun. 13, 5623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, S. et al. TadA reprogramming to generate potent miniature base editors with high precision. Nat. Commun. 14, 413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moon, S. B., Kim, D. Y., Ko, J.-H., Kim, J.-S. & Kim, Y.-S. Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol. 37, 870–881 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  62. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sato, K., Kato, Y., Hamada, M., Akutsu, T. & Asai, K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27, i85–i93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Malinin, N. L. et al. Defining genome-wide CRISPR–Cas genome-editing nuclease activity with GUIDE-seq. Nat. Protoc. 16, 5592–5615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsai, S. Q., Topkar, V. V., Joung, J. K. & Aryee, M. J. Open-source guideseq software for analysis of GUIDE-seq data. Nat. Biotechnol. 34, 483 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Tang laboratory for discussion. We thank the staff at the University of Chicago Advanced Electron Microscopy Facility (RRID: SCR_019198) for helping with cryo-EM data collection. We thank the Research Computing Center at the University of Chicago for providing the computing resources of the Beagle 3 HPC cluster funded by the National Institutes of Health (NIH) (S10OD028655). This work was supported by the NIH under grant number R35GM143052 to M.Z. W.T. is supported by the Searle Scholars Program (SSP-2021-113), the Cancer Research Foundation Young Investigator Program, the American Cancer Society (RSG-22-043-01-ET), and the David & Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments and interpreted the data. T.W., M.Z. and W.T. conceived the project. T.W. and S.Z. performed protein engineering, gRNA engineering, cellular gene-editing and in vitro DNA cleavage assays with help and suggestions from H.Y. C.L. and B.Y. purified proteins. C.L. collected cryo-EM data and performed data analysis. R.L. assisted with GUIDE-seq data analysis. T.W., C.L., M.Z. and W.T. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Minglei Zhao or Weixin Tang.

Ethics declarations

Competing interests

T.W., S.Z. and W.T. are inventors on a US provisional patent application on enAsCas12f. T.W. is a shareholder of AccuraDX. All other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jun-Jie Liu, Hyongbum Henry Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Supplementary Figs. 1–18.

Reporting Summary

Supplementary Data 1

Sequences of DNA oligos used to amplify genomic loci for amplicon sequencing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Liu, C., Zou, S. et al. An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity. Nat Chem Biol 19, 1384–1393 (2023). https://doi.org/10.1038/s41589-023-01380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01380-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing