Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isoform-selective regulation of mammalian cryptochromes

Abstract

CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY–compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenylpyrazole derivatives lengthen circadian period.
Fig. 2: KL101 and TH301 are selective against CRY1 and CRY2.
Fig. 3: KL101 and TH301 interact with the FAD-binding pocket of CRY1.
Fig. 4: C-terminal region of CRY is required for the effects of KL101 and TH301.
Fig. 5: CRY exon 10 affects selectivity of KL101 and TH301.
Fig. 6: KL101 and TH301 promote brown adipocyte differentiation.

Similar content being viewed by others

Data availability

The final coordinates of CRY1, CRY1–KL044, CRY1–KL101, CRY1–TH301 and CRY2–TH301 were deposited into the Protein Data Bank with the accession numbers 6KX4, 6KX5, 6KX6, 6KX7 and 6KX8, respectively. Further data are available from the corresponding authors upon request.

References

  1. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Z., Yoo, S. H. & Takahashi, J. S. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu. Rev. Pharmacol. Toxicol. 58, 231–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Hirota, T. & Kay, S. A. Identification of small-molecule modulators of the circadian clock. Methods Enzymol. 551, 267–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xing, W. et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nangle, S., Xing, W. & Zheng, N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23, 1417–1419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  PubMed  Google Scholar 

  10. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huber, A. L. et al. CRY2 and FBXL3 cooperatively degrade c-MYC. Mol. Cell 64, 774–789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirota, T. et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIÉ‘ as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J. W. et al. A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angew. Chem. Int. Ed. Engl. 50, 10608–10611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oshima, T. et al. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci. Adv. 5, eaau9060 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baggs, J. E. et al. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Oshima, T. et al. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock. Angew. Chem. Int. Ed. Engl. 54, 7193–7197 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. W. et al. Development of small-molecule cryptochrome stabilizer derivatives as modulators of the circadian clock. ChemMedChem 10, 1489–1497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394–1405 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Levy, C. et al. Updated structure of Drosophila cryptochrome. Nature 495, E3–E4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maul, M. J. et al. Crystal structure and mechanism of a DNA (6-4) photolyase. Angew. Chem. Int. Ed. Engl. 47, 10076–10080 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Chaves, I. et al. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 26, 1743–1753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, P. et al. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J. Biol. Chem. 288, 35277–35286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakakida, Y. et al. Importin É‘/β mediates nuclear transport of a mammalian circadian clock component, mCRY2, together with mPER2, through a bipartite nuclear localization signal. J. Biol. Chem. 280, 13272–13278 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kurabayashi, N., Hirota, T., Sakai, M., Sanada, K. & Fukada, Y. DYRK1A and glycogen synthase kinase 3β, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol. Cell. Biol. 30, 1757–1768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patke, A. et al. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169, 203–215.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosensweig, C. et al. An evolutionary hotspot defines functional differences between CRYPTOCHROMES. Nat. Commun. 9, 1138 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157, 1203–1215 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Nangle, S. N. et al. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fribourgh, J. L. et al. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. eLife 9, e55275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gerhart-Hines, Z. et al. The nuclear receptor Rev-erbÉ‘ controls circadian thermogenic plasticity. Nature 503, 410–413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nam, D. et al. The adipocyte clock controls brown adipogenesis through the TGF-β and BMP signaling pathways. J. Cell Sci. 128, 1835–1847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jordan, S. D. et al. CRY1/2 selectively repress pparδ and limit exercise capacity. Cell Metab. 26, 243–255 e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vitaterna, M. H. et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA 96, 12114–12119 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, E. E. et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139, 199–210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, A. C. et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129, 605–616 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ode, K. L. et al. Knockout-rescue embryonic stem cell-derived mouse reveals circadian-period control by quality and quantity of CRY1. Mol. Cell 65, 176–190 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Michael, A. K. et al. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proc. Natl Acad. Sci. USA 114, 1560–1565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  45. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Ono, Y. Niwa, A. Shiba, N. Kadofusa and Y. Aoki for technical assistance; T. Senda for technical advice; J.S. Takahashi (UT Southwestern) for Per2::Luc knock-in mice; T. Todo (Osaka University) for Cry1/Cry2 double knockout mice; and H.R. Ueda (University of Tokyo) for Cry1/Cry2 double knockout cells and pMU2-P(Cry1)-FLAG-I/RRE-Cry1 plasmid. This work was supported in part by JST PRESTO Grant No. JPMJPR14LA (T.H.); JSPS Grants No. 15H05590 and No. 18H02402 (T.H.); the Takeda Science Foundation (T.H.); the Suzuken Memorial Foundation (T.H.); AMED Grant No. JP19gm6110026 (M.H.); a JST PRESTO Grant (M.H.); JSPS Grants No. 16H06174, No. 19H03266 and No. 19K22693 (M.H.); the Uehara Memorial Foundation (M.H.); the Sumitomo Foundation (M.H.); the Astellas Foundation for Research on Metabolic Disorders (M.H.); the Cell Science Research Foundation (M.H.); JSPS Grant No. 18K06316 (Y.L.S.); and a MEXT PDIS Grant (S.O.). X-ray diffraction data collection and preliminary experiments were carried out at beamlines BL44XU of SPring-8 (proposals No. 2017A6743 and No. 2017B6743), BL41XU of SPring-8 (proposal No. 2018B1011) and BL-17A of the Photon Factory (proposals No. 2016R-63 and No. 2017G563). Recombinant CRY expression and beamline experiments were supported in part by BINDS from AMED (support No. JP19am0101074-0055 and No. JP19am0101071-0529).

Author information

Authors and Affiliations

Authors

Contributions

T.H. and M.H. conceptualized and administrated the project. S.M., Y.A., A. Srivastava and K.H. performed structural biology experiments. T.O. synthesized GO series compounds. Y.L.S. and M.H. conducted BAT experiments. E.M., Y.N., A. Sugiyama, A.H. and T.H. performed all other experiments. K.A., S.O. and A. Sato provided reagents and facilities. S.M., Y.L.S., Y.N., A. Srivastava, S.H., M.H. and T.H. validated data. T.H., M.H., S.M. and Y.L.S. visualized data and wrote the manuscript. T.H., M.H., S.M., Y.L.S., A. Srivastava, S.O. and S.H. edited the manuscript. All authors read and approved the manuscript. T.H., M.H., S.A.K., K.I. and F.T. supervised the project. T.H., M.H., Y.L.S. and S.O. acquired funding.

Corresponding authors

Correspondence to Megumi Hatori or Tsuyoshi Hirota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–10 and Note.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, S., Son, Y.L., Aikawa, Y. et al. Isoform-selective regulation of mammalian cryptochromes. Nat Chem Biol 16, 676–685 (2020). https://doi.org/10.1038/s41589-020-0505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0505-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing