Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis

An Author Correction to this article was published on 02 March 2021

This article has been updated

Abstract

Ferroptosis is widely involved in degenerative diseases in various tissues including kidney, liver and brain, and is a targetable vulnerability in multiple primary and therapy-resistant cancers. Accumulation of phospholipid hydroperoxides in cellular membranes is the hallmark and rate-limiting step of ferroptosis; however, the enzymes contributing to lipid peroxidation remain poorly characterized. Using genome-wide, CRISPR–Cas9-mediated suppressor screens, we identify cytochrome P450 oxidoreductase (POR) as necessary for ferroptotic cell death in cancer cells exhibiting inherent and induced susceptibility to ferroptosis. By genetic depletion of POR in cancer cells, we reveal that POR contributes to ferroptosis across a wide range of lineages and cell states, and in response to distinct mechanisms of ferroptosis induction. Using systematic lipidomic profiling, we further map POR’s activity to the lipid peroxidation step in ferroptosis. Hence, our work suggests that POR is a key mediator of ferroptosis and potential druggable target for developing antiferroptosis therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide CRISPR screens identify POR as a mediator of ferroptosis.
Fig. 2: POR contributes to ferroptotic cell death in multiple cancer lineages.
Fig. 3: POR is not required for GPX4-ML210/RSL3 binding.
Fig. 4: POR contributes to ferroptosis induced by distinct mechanisms.
Fig. 5: POR mediates ferroptosis by facilitating lipid peroxidation.

Similar content being viewed by others

Data availability

Raw sequencing data for CRISPR–Cas9 screens in UACC-257 melanoma cells are deposited at the Gene Expression Omnibus (accession number GSE130982). Processed CRISPR screening data are supplied as Supplementary Dataset 1. The global lipidomics analysis results are presented in Supplementary Dataset 2, and the redox-lipidomics analysis results are presented in Supplementary Dataset 3. All original data that support the findings of this study are available upon request.

Code availability

All computational code that support the findings of this study are available upon request.

Change history

References

  1. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alim, I. et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Q. et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2, e90777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Bogacz, M. & Krauth-Siegel, R. L. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife 7, e37503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Distéfano, A. M. et al. Heat stress induces ferroptosis-like cell death in plants. J. Cell Biol. 216, 463–476 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–211 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eaton, J. K. et al. Targeting a therapy-resistant cancer cell state using masked electrophiles as GPX4 inhibitors. Preprint at bioRxiv https://doi.org/10.1101/376764 (2018).

  17. Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuhn, H., Banthiya, S. & van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851, 308–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pandey, A. V. & Flück, C. E. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol. Ther. 138, 229–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Foti, R. S. & Dalvie, D. K. Cytochrome P450 and non-cytochrome P450 oxidative metabolism: contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab. Dispos. 44, 1229–1245 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Veith, A. & Moorthy, B. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Curr. Opin. Toxicol. 7, 44–51 (2018).

    Article  PubMed  Google Scholar 

  28. Riddick, D. S. et al. NADPH–cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab. Disposition 41, 12–23 (2013).

    Article  CAS  Google Scholar 

  29. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, l1 (2013).

    Article  CAS  Google Scholar 

  32. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffith, O. W. & Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254, 7558–7560 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Gaschler, M. M. et al. FINO initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ilan, Z., Ilan, R. & Cinti, D. L. Evidence for a new physiological role of hepatic NADPH:ferricytochrome (P-450) oxidoreductase. Direct electron input to the microsomal fatty acid chain elongation system. J. Biol. Chem. 256, 10066–10072 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Lamb, D. C., Warrilow, A. G., Venkateswarlu, K., Kelly, D. E. & Kelly, S. L. Activities and kinetic mechanisms of native and soluble NADPH-cytochrome P450 reductase. Biochem. Biophys. Res. Commun. 286, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Minoda, Y. & Kharasch, E. D. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6). Anesthesiology 95, 509–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh, M. K., Mukhopadhyay, M. & Chatterjee, I. B. NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid. Mol. Cell. Biochem 166, 35–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Dey, A., Parmar, D., Dhawan, A., Dash, D. & Seth, P. K. Cytochrome P450 2E1 dependent catalytic activity and lipid peroxidation in rat blood lymphocytes. Life Sci. 71, 2509–2519 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bast, A., Brenninkmeijer, J. W., Savenije-Chapel, E.M. & Noordhoek, J. Cytochrome P450 oxidase activity and its role in NADPH dependent lipid peroxidation. FEBS Lett. 151, 185–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Sevanian, A., Nordenbrand, K., Kim, E., Ernster, L. & Hochstein, P. Microsomal lipid peroxidation: the role of NADPH–cytochrome P450 reductase and cytochrome P450. Free Radic. Biol. Med. 8, 145–152 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Ursini, F., Maiorino, M., Hochstein, P. & Ernster, L. Microsomal lipid peroxidation: mechanisms of initiation. The role of iron chelators. Free Radic. Biol. Med. 6, 31–36 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Girotti, A. W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529–1542 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Brütsch, S. H. et al. Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid. Redox Signal. 22, 281–293 (2015).

    Article  PubMed  CAS  Google Scholar 

  49. Bai, Y.-T. et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem. Biophys. Res. Commun. 499, 44–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. NaveenKumar, S. K. et al. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets. ACS Chem. Biol. 13, 1996–2002 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L. & Brown, M. S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276, 4365–4372 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hegde, M., Strand, C., Hanna, R. E. & Doench, J. G. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS ONE 13, e0197547 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naguib, Y. M. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal. Biochem. 265, 290–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Cathcart, R., Schwiers, E. & Ames, B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem. 134, 111–116 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, W. et al. CD8 + T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Aoyagi, M. Arita, P. Kennedy, M. Gijón and T. Zhao for assisting with the redox-lipidomics analyses. This work was supported in part by the NCI’s Cancer Target Discovery and Development (CTD2) Network (grant No. U01CA217848, awarded to S.L.S.), and in part by the National Institute of General Medical Sciences (grant No. R35GM127045, awarded to S.L.S.). G.S.-G. is supported by a fellowship from the Howard Hughes Medical Institute Exceptional Research Opportunities Program.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.L.S. conceived the project and wrote the manuscript. Y.Z. and H.L. designed and performed the experiments and data analyses. H.L. and J.G.D. performed the CRISPR screens in UACC-257 cells. A.A.D. and C.B.C. performed the lipidomics analysis. J.K.E. performed chemical synthesis, as well as the GPX4 and ML210/RSL3 interaction analysis. W.W. assisted the chemical treatment experiments and data interpretations. E.T.G. and G.S-G. assisted the cellular experiments. All authors interpreted data, discussed results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Yilong Zou or Stuart L. Schreiber.

Ethics declarations

Competing interests

S.L.S. serves on the Board of Directors of the Genomics Institute of the Novartis Research Foundation (GNF); is a shareholder and serves on the Board of Directors of Jnana Therapeutics; is a shareholder of Forma Therapeutics; is a shareholder and advises Decibel Therapeutics and Eikonizo Therapeutics; serves on the Scientific Advisory Boards of Eisai Co., Ltd., Ono Pharma Foundation, Exo Therapeutics, and F-Prime Capital Partners; and is a Novartis Faculty Scholar. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Dataset 1

Top hits from genome-wide CRISPR screening in UACC-257-Cas9 cells treated with ML210 and linoleic acid (LA, C18:2), α-linolenic acid (ALA, C18:3), arachidonic acid (AA, C20:4), eicosapentaenoic acid (EPA, C20:5), docosapentaenoic acid (DPA, C22:5n-3) or docosahexaenoic acid (DHA, C22:6).

Supplementary Dataset 2

Global lipidomics analysis for WT and POR-depleted 786-O-Cas9 and 769-P-Cas9 cells.

Supplementary Dataset 3

Redox-lipidomics analysis for WT and POR-depleted 786-O-Cas9 and 769-P-Cas9 cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Li, H., Graham, E.T. et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16, 302–309 (2020). https://doi.org/10.1038/s41589-020-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0472-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer