Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allostery governs Cdk2 activation and differential recognition of CDK inhibitors

Abstract

Cyclin-dependent kinases (CDKs) are the master regulators of the eukaryotic cell cycle. To become activated, CDKs require both regulatory phosphorylation and binding of a cognate cyclin subunit. We studied the activation process of the G1/S kinase Cdk2 in solution and developed a thermodynamic model that describes the allosteric coupling between regulatory phosphorylation, cyclin binding and inhibitor binding. The results explain why monomeric Cdk2 lacks activity despite sampling an active-like state, reveal that regulatory phosphorylation enhances allosteric coupling with the cyclin subunit and show that this coupling underlies differential recognition of Cdk2 and Cdk4 inhibitors. We identify an allosteric hub that has diverged between Cdk2 and Cdk4 and show that this hub controls the strength of allosteric coupling. The altered allosteric wiring of Cdk4 leads to compromised activity toward generic peptide substrates and comparative specialization toward its primary substrate retinoblastoma (RB).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclin binding triggers a concerted conformational change in Cdk2.
Fig. 2: Monomeric Cdk2 dynamically samples a catalytically inactive Aloop-out state.
Fig. 3: Cdk2 inhibitors drive conformational shifts on binding.
Fig. 4: Tight binding of Cdk2 inhibitors arises from allosteric coupling with the cyclin subunit.
Fig. 5: A divergent hub controlling allosteric coupling in Cdk2.

Similar content being viewed by others

Data availability

The data that support the findings in this study are available within the paper (main and supplementary sections).

Code availability

The program used to analyze DEER data for this study, Venison, is available for download from https://github.com/thompsar/Venison.

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, R. P. & Morgan, D. O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78, 713–724 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Desai, D., Wessling, H. C., Fisher, R. P. & Morgan, D. O. Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol. Cell. Biol. 15, 345–350 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Bondt, H. L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  PubMed  Google Scholar 

  5. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Russo, A. A., Jeffrey, P. D. & Pavletich, N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Schachter, M. M. et al. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol. Cell 50, 250–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Day, P. J. et al. Crystal structure of human CDK4 in complex with a D-type cyclin. Proc. Natl Acad. Sci. USA 106, 4166–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takaki, T. et al. The structure of CDK4/cyclin D3 has implications for models of CDK activation. Proc. Natl Acad. Sci. USA 106, 4171–4176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiang, Y. W., Borbat, P. P. & Freed, J. H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172, 279–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hagelueken, G., Ward, R., Naismith, J. H. & Schiemann, O. MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. Appl. Magn. Reson. 42, 377–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pisani, P., Caporuscio, F., Carlino, L. & Rastelli, G. Molecular dynamics simulations and classical multidimensional scaling unveil new metastable states in the conformational landscape of CDK2. PLoS ONE 11, e0154066 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown, N. R. et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274, 8746–8756 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Alexander, L. T. et al. Type II inhibitors targeting CDK2. ACS Chem. Biol. 10, 2116–2125 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Tsai, C. J. & Nussinov, R. A unified view of ‘how allostery works’. PLoS Comput. Biol. 10, e1003394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Battiste, J. L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Song, H. et al. Phosphoprotein–protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol. Cell 7, 615–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Levinson, N. M. The multifaceted allosteric regulation of aurora kinase A. Biochem. J. 475, 2025–2042 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Le Tourneau, C. et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur. J. Cancer 46, 3243–3250 (2010).

    Article  PubMed  Google Scholar 

  20. Ghia, P. et al. Efficacy and safety of dinaciclib vs ofatumumab in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 129, 1876–1878 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro, G. I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin. Cancer Res 10, 4270s–4275s (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Martin, M. P., Olesen, S. H., Georg, G. I. & Schonbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. De Azevedo, W. F. et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518–526 (1997).

    Article  PubMed  Google Scholar 

  24. Levinson, N. M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wood, D. J. et al. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem. Biol. 26, 121–130 e125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levinson, N. M. & Boxer, S. G. A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nat. Chem. Bio. 10, 127–132 (2014).

    Article  CAS  Google Scholar 

  27. Cyphers, S., Ruff, E. F., Behr, J. M., Chodera, J. D. & Levinson, N. M. A water-mediated allosteric network governs activation of Aurora kinase A. Nat. Chem. Bio. 13, 402–408 (2017).

    Article  CAS  Google Scholar 

  28. Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675–690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hall, D. A. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, P. et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 15, 2273–2281 (2016).

    Article  PubMed  Google Scholar 

  31. Hafner, M. et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem. Biol. 26, 1067–1080 e1068 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Topacio, B. R. et al. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s C-Terminal helix. Mol. Cell 74, 758–770 e754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chi, Y. et al. Identification of CDK2 substrates in human cell lysates. Genome Biol. 9, R149 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Merrick, K. A. et al. Distinct activation pathways confer cyclin-binding specificity on Cdk1 and Cdk2 in human cells. Mol. Cell 32, 662–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finn, R. S. et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hortobagyi, G. N. Ribociclib for HR-Positive, advanced breast cancer. N. Engl. J. Med. 376, 289 (2017).

    PubMed  Google Scholar 

  38. Toogood, P. L. et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem. 48, 2388–2406 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. VanderWel, S. N. et al. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J. Med. Chem. 48, 2371–2387 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Guiley, K. Z. et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 366, 12 (2019).

    Article  Google Scholar 

  41. Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H. W. Dead-time free measurement of dipole–dipole interactions between electron spins. J. Magn. Reson. 142, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Priestley, M. B. Spectral Analysis and Time Series (Academic Press, 1981).

  43. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article  PubMed  Google Scholar 

  45. Warren, C. et al. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release. Nat. Commun. 8, 2215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iwahara, J., Tang, C. & Marius Clore, G. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson. 184, 185–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Schaaf, T. M., Peterson, K. C., Grant, B. D., Thomas, D. D. & Gillispie, G. D. Spectral unmixing plate reader: high-throughput, high-precision FRET assays in living cells. SLAS Disco. 22, 250–261 (2017).

    Article  CAS  Google Scholar 

  48. Hagopian, J. C. et al. Kinetic basis for activation of CDK2/cyclin A by phosphorylation. J. Biol. Chem. 276, 275–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Stevenson-Lindert, L. M., Fowler, P. & Lew, J. Substrate specificity of CDK2-cyclin A. What is optimal? J. Biol. Chem. 278, 50956–50960 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Young for the Cdk2 and yeast CAK constructs, J. Endicott for the bovine cyclinA construct and S. Rubin for the RB771–928 construct. We thank J. Dalluge for assistance with mass spectrometry. This work was supported in part by grants from the National Institutes of Health (no. R01 GM121515, N.M.L.) and the National Institutes of Health Cancer Biology Training grant (no. T32 CA009138, A.M.) and Chemistry-Biology Interface Training grant (no. T32 GM132029, D.M.R.).

Author information

Authors and Affiliations

Authors

Contributions

N.M.L. and A.M. conceived the study. A.M. performed the DEER and FRET experiments. D.J.B. performed the NMR experiments. T.A.E. assisted with expression and purification of cyclinA and RB. J.M.M. supervised the global fitting analysis of the FRET data. A.R.T. assisted with the collection and analysis of DEER data. D.M.R. assisted with FRET experiments. M.V.S. assisted with NMR experiments. D.D.T., G.V. and N.M.L. provided overall guidance and supervision of the experiments. N.M.L. and A.M. wrote the manuscript.

Corresponding author

Correspondence to Nicholas M. Levinson.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cdk2 inhibitors drive conformational shifts upon binding.

Aligned crystal structures of Cdk2 bound to dinaciclib and roscovitine (top), and structures of Cdk2:cyclinA bound to flavopiridol and ADP shown side by side (bottom). Hydrogen bonds are shown as yellow dashed lines, and structured water molecules as red spheres. The structure of Cdk2 bound to AZD5438 is shown in Supplementary Fig. 7.

Extended Data Fig. 2 A divergent hub controlling allosteric coupling in Cdk2.

a) KM values for phosphorylation of a short peptide substrate (left) and RB (right), measured for WT Cdk2, Cdk2cdk4hub and Cdk4. Values are mean ± S.E.M; n = 4 independent experiments. b) DEER data for the Cdk2cdk4hub mutant bound to cyclinA with and without addition of saturating peptide substrate and AMPPNP.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, A., Burban, D.J., Muretta, J.M. et al. Allostery governs Cdk2 activation and differential recognition of CDK inhibitors. Nat Chem Biol 17, 456–464 (2021). https://doi.org/10.1038/s41589-020-00725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-00725-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing