Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural equilibrium underlying ligand-dependent activation of β2-adrenoreceptor

Abstract

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins mediating cellular signals in response to extracellular stimuli. Although three-dimensional structures showcase snapshots that can be sampled in the process and nuclear magnetic resonance detects conformational equilibria, the mechanism by which agonist-activated GPCRs interact with various effectors remains elusive. Here, we used paramagnetic nuclear magnetic resonance for leucine amide resonances to visualize the structure of β2-adrenoreceptor in the full agonist-bound state, without thermostabilizing mutations abolishing its activity. The structure exhibited a unique orientation of the intracellular half of the transmembrane helix 6, forming a cluster of G-protein-interacting residues. Furthermore, analyses of efficacy-dependent chemical shifts of the residues near the pivotal PIF microswitch identified an equilibrium among three conformations, including one responsible for the varied signal level in each ligand-bound state. Together, these results provide a structural basis for the dynamic activation of GPCRs and shed light on GPCR-mediated signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 1H-15N TROSY spectra of [2,3,3–2H,15N]-Leu-labeled β2AR-Δ.
Fig. 2: PRE analyses in the formoterol-bound state.
Fig. 3: PRE structural model of the agonist-activated β2AR.
Fig. 4: Ligand-dependent spectral changes.
Fig. 5: Model of β2AR activation regulated by ligand-dependent equilibrium shift.

Similar content being viewed by others

Data availability

Atomic coordinates for β2AR-Δ in the fully activated state have been deposited in the PDB under accession code 6KR8. The NMR data and restraints used in the structure calculations have been deposited in the Biological Magnetic Resonance Data Bank under accession number 36284. The other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All code used in this study is available from the corresponding author upon reasonable request.

References

  1. Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Erlandson, S. C., McMahon, C. & Kruse, A. C. Structural basis for G-protein-coupled receptor signaling. Annu. Rev. Biophys. 47, 1–18 (2018).

    CAS  Google Scholar 

  3. Flock, T. et al. Selectivity determinants of GPCR: G-protein binding. Nature 545, 317–322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Deupi, X. & Kobilka, B. K. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiol. (Bethesda) 25, 293–303 (2010).

    CAS  Google Scholar 

  5. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Xiang, J. et al. Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol. Sci. 37, 1055–1069 (2016).

    CAS  PubMed  Google Scholar 

  7. Trzaskowski, B. et al. Action of molecular switches in GPCRs: theoretical and experimental studies. Curr. Med. Chem. 19, 1090–1109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Edward Zhou, X., Melcher, K. & Eric Xu, H. Structural biology of G-protein‐coupled receptor signaling complexes. Protein Sci. 28, 487–501 (2019).

    CAS  PubMed  Google Scholar 

  9. Warne, T. et al. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 469, 241–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Egloff, P. et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 111, E655–E662 (2014).

    CAS  PubMed  Google Scholar 

  12. Peng, Y. et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. White, J. F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Heydenreich, F. M., Vuckovic, Z., Matkovic, M. & Veprintsev, D. B. Stabilization of G protein-coupled receptors by point mutations. Front. Pharm. 6, 82 (2015).

    Google Scholar 

  19. Kofuku, Y. et al. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat. Commun. 3, 1045 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 1106, 1106–1111 (2012).

    Google Scholar 

  21. Solt, A. S. et al. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat. Commun. 8, 1795 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manglik, A. et al. Structural Insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. Nature 547, 68–73 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wingler, L. M. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176, 468–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Eddy, M. T. et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172, 68–80 (2018).

    CAS  PubMed  Google Scholar 

  27. Roth, C. B., Hanson, M. A. & Stevens, R. C. Stabilization of the human β2-adrenergic receptor TM4–TM3–TM5 helix interface by mutagenesis of Glu1223.41, a critical residue in GPCR structure. J. Mol. Biol. 376, 1305–1319 (2008).

    CAS  PubMed  Google Scholar 

  28. Gossert, A. D. et al. A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J. Biomol. NMR 51, 449–456 (2011).

    CAS  PubMed  Google Scholar 

  29. Battiste, J. L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    CAS  PubMed  Google Scholar 

  30. Anthis, N. J. & Clore, G. M. Visualizing transient dark states by NMR spectroscopy. Q. Rev. Biophys. 48, 35–116 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. King, G. J. et al. The Arabidopsis B3 domain protein VERNALIZATION1 (VRN1) is involved in processes essential for development, with structural and mutational studies revealing its DNA-binding surface. J. Biol. Chem. 288, 3198–3207 (2013).

    CAS  PubMed  Google Scholar 

  32. Reibarkh, M., Malia, T. J. & Wagner, G. NMR distinction of single- and multiple-mode binding of small-molecule protein ligands. J. Am. Chem. Soc. 128, 2160–2161 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hobbs, C. A., Bobay, B. G., Thompson, R. J., Perego, M. & Cavanagh, J. NMR solution structure and DNA-binding model of the DNA-binding domain of competence protein A. J. Mol. Biol. 398, 248–263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeuchi, K., Imai, M. & Shimada, I. Dynamic equilibrium on DNA defines transcriptional regulation of a multidrug binding transcriptional repressor, LmrR. Sci. Rep. 7, 267 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Minato, Y., Ueda, T., Machiyama, A., Iwaï, H. & Shimada, I. Dynamic domain arrangement of CheA–CheY complex regulates bacterial thermotaxis, as revealed by NMR. Sci. Rep. 7, 16462 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).

    CAS  Google Scholar 

  37. Waudby, C. A., Ramos, A., Cabrita, L. D. & Christodoulou, J. Two-dimensional NMR lineshape analysis. Sci. Rep. 6, 24826 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996).

    CAS  Google Scholar 

  39. Nagata, K., Sugita, S. & Okada, M. Bayesian spectral deconvolution with the exchange Monte Carlo method. Neural Netw. 28, 82–89 (2012).

    PubMed  Google Scholar 

  40. Fernández, C. & Wider, G. TROSY in NMR studies of the structure and function of large biological macromolecules. Curr. Opin. Struct. Biol. 13, 570–580 (2003).

    PubMed  Google Scholar 

  41. Lapinaite, A. et al. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502, 519–523 (2013).

    CAS  PubMed  Google Scholar 

  42. Gottstein, D., Reckel, S., Dötsch, V. & Güntert, P. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR. Structure 20, 1019–1027 (2012).

    CAS  PubMed  Google Scholar 

  43. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 314, 1–17 (2016).

    Google Scholar 

  44. Grzesiek, S., Cordier, F., Jaravine, V. & Barfield, M. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog. Nucl. Magn. Reson. Spectrosc. 45, 275–300 (2004).

    CAS  Google Scholar 

  45. Zou, Y., Weis, W. I. & Kobilka, B. K. N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7, e46039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into 2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    CAS  PubMed  Google Scholar 

  47. Fung, J. J. et al. Ligand-regulated oligomerization of β(2)-adrenoceptors in a model lipid bilayer. EMBO J. 28, 3315–3328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nietlispach, D. Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection TROSY scheme. J. Biomol. NMR 31, 161–166 (2005).

    CAS  PubMed  Google Scholar 

  49. Helmus, J. J. & Jaroniec, C. P. NMRglue: an open source Python package for the analysis of multidimensional NMR data. J. Biomol. NMR 55, 355–367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    CAS  PubMed  Google Scholar 

  51. Schwieters, C. D., Bermejo, G. A. & Clore, G. M. Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci. 27, 26–40 (2018).

    CAS  PubMed  Google Scholar 

  52. Iwahara, J., Schwieters, C. D. & Clore, G. M. Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879–5896 (2004).

    CAS  PubMed  Google Scholar 

  53. McConnell, H. M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by The Ministry of Education, Culture, Sports, Science and Technology and the Japan Society for the Promotion of Science KAKENHI grant number JP17H06097 and by the development of innovative drug discovery technologies for middle-sized molecules from the Japan Agency for Medical Research and Development (to I.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.I. designed the study, constructed β2AR-Δ and its variants, purified proteins, conducted GTP turnover assays with T.Y., acquired NMR spectra, analyzed the PRE data and calculated the PRE structure and wrote the manuscript. Y.K. established the purification protocol of β2AR at the early stage of the project and constructed the plasmid for the expression of cystathionine-γ-synthase. Y.S. prepared the virus stock for the coexpression of the Gs heterotrimer and cultured the cells by using the virus stock. T.U. performed the exchange Monte Carlo calculation. I.S. designed the study, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Ichio Shimada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, S., Yokomizo, T., Kofuku, Y. et al. Structural equilibrium underlying ligand-dependent activation of β2-adrenoreceptor. Nat Chem Biol 16, 430–439 (2020). https://doi.org/10.1038/s41589-019-0457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0457-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing