Lipid droplets can promote drug accumulation and activation

Abstract

Genetic screens in cultured human cells represent a powerful unbiased strategy to identify cellular pathways that determine drug efficacy, providing critical information for clinical development. We used insertional mutagenesis-based screens in haploid cells to identify genes required for the sensitivity to lasonolide A (LasA), a macrolide derived from a marine sponge that kills certain types of cancer cells at low nanomolar concentrations. Our screens converged on a single gene, LDAH, encoding a member of the metabolite serine hydrolase family that is localized on the surface of lipid droplets. Mechanistic studies revealed that LasA accumulates in lipid droplets, where it is cleaved into a toxic metabolite by LDAH. We suggest that selective partitioning of hydrophobic drugs into the oil phase of lipid droplets can influence their activation and eventual toxicity to cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genetic screens in human haploid cells to identify genes required for lasonolide A (LasA) toxicity.
Fig. 2: The serine hydrolase activity of LDAH is required for LasA toxicity.
Fig. 3: LDAH converts LasA to LasF by cleaving its side chain.
Fig. 4: Membrane localization of LDAH is required for LasA sensitivity.
Fig. 5: Subcellular distribution of LasA and LasF.
Fig. 6: A proposed mechanism for the uptake of LasA and its activation by LDAH-mediated cleavage.

Data availability

The complete lists of the hits from the genetic screens are given in Supplementary Data 1. RNA-seq data from Hap1 cells is freely available at NCBI GEO, under accession no. GSE75515. The GI50 data for LasA and the RNA-seq data for cancer cell lines is publicly available (accession numbers given in the appropriate Methods section). Software for analysis of screen results has been described previously9,10 and is freely available on github: https://github.com/RohatgiLab/BAIMS-Pipeline.

References

  1. 1.

    Horton, P. A., Koehn, F. E., Longley, R. E. & McConnell, O. J. Lasonolide A, a new cytotoxic macrolide from the marine sponge Forcepia sp. J. Am. Chem. Soc. 116, 6015–6016 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    Wright, A. E. et al. Lasonolides C–G, five new lasonolide compounds from the sponge Forcepia sp. J. Nat. Prod. 67, 1351–1355 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Isbrucker, R. A., Guzman, E. A., Pitts, T. P. & Wright, A. E. Early effects of lasonolide A on pancreatic cancer cells. J. Pharmacol. Exp. Ther. 331, 733–739 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, Y. W., Ghosh, A. K. & Pommier, Y. Lasonolide A, a potent and reversible inducer of chromosome condensation. Cell Cycle 11, 4424–4435 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Josse, R. et al. Activation of RAF1 (c-RAF) by the marine alkaloid lasonolide A induces rapid premature chromosome condensation. Mar. Drugs 13, 3625–3639 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Trost, B. M. et al. Total synthesis of (−)-lasonolide A. J. Am. Chem. Soc. 138, 11690–11701 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Dubey, R. et al. Chromatin-remodeling complex SWI/SNF controls multidrug resistance by transcriptionally regulating the drug efflux pump ABCB1. Cancer Res. 76, 5810–5821 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Bachovchin, D. A. & Cravatt, B. F. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11, 52–68 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Hebenstreit, D. et al. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol. Syst. Biol. 7, 497–497 (2011).

    Article  Google Scholar 

  14. 14.

    Goo, Y. H., Son, S. H., Kreienberg, P. B. & Paul, A. Novel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization. Arterioscler. Thromb. Vasc. Biol. 34, 386–396 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Thiel, K. et al. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J. Cell Sci. 126, 2198–2212 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Currall, B. B. et al. Loss of LDAH associated with prostate cancer and hearing loss. Hum. Mol. Genet. 27, 4194–4203 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Kory, N. et al. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. J. Lipid Res. 58, 226–235 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Brasaemle, D. L. & Wolins, N. E. Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 72, 3.15.1–3.15.13 (2016).

    Article  Google Scholar 

  21. 21.

    Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Greenwood, D. J. et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 364, 1279–1282 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Zheng, N., Tsai, H. N., Zhang, X. & Rosania, G. R. The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology. Mol. Pharm. 8, 1619–1628 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    den Brok, M. H., Raaijmakers, T. K., Collado-Camps, E. & Adema, G. J. Lipid droplets as immune modulators in myeloid cells. Trends Immunol. 39, 380–392 (2018).

    Article  Google Scholar 

  25. 25.

    Fowler, S., Shio, H. & Haley, N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Investig. 41, 372–378 (1979).

    CAS  PubMed  Google Scholar 

  26. 26.

    Foley, P. Lipids in Alzheimer’s disease: a century-old story. Biochim. Biophys. Acta 1801, 750–753 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Delikatny, E. J., Chawla, S., Leung, D.-J. & Poptani, H. MR-visible lipids and the tumor microenvironment. NMR Biomedicine 24, 592–611 (2011).

    CAS  Google Scholar 

  28. 28.

    Petan, T., Jarc, E. & Jusović, M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules 23, 1941 (2018).

    Article  Google Scholar 

  29. 29.

    Sundelin, J. P. et al. Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma. PLoS ONE 7, e48694 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Hager, M. H., Solomon, K. R. & Freeman, M. R. The role of cholesterol in prostate cancer. Curr. Opin. Clin. Nutr. Metab. Care 9, 379–385 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Aboumrad, M. H., Horn, R. C. Jr. & Fine, G. Lipid-secreting mammary carcinoma. Report of a case associated with Paget’s disease of the nipple. Cancer 16, 521–525 (1963).

    CAS  Article  Google Scholar 

  32. 32.

    Ramos, C. V. & Taylor, H. B. Lipid-rich carcinoma of the breast. A clinicopathologic analysis of 13 examples. Cancer 33, 812–819 (1974).

    CAS  Article  Google Scholar 

  33. 33.

    Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).

    Article  Google Scholar 

  37. 37.

    Trost, B. M. et al. A concise synthesis of (−)-lasonolide A. J. Am. Chem. Soc. 136, 88–91 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Herschlag for bringing the LasA project to our attention, C. Pataki and R. Kopito for comments and advice on lipid droplet fractionation experiments and A. Lebensohn for advice on the project. The work was funded by DP2 GM105448 (R.R.), R35 GM118082 (R.R.), DP2 AI104557 (J.E.C.), American Heart Association Transformational Research Projects no. 18TPA34230103 (A.P.) and no. 18TPA34230086 (Y.-H.G.), and Dominic Ferraioli Foundation (A.P.). R.R. is a Josephine Q. Berry Faculty Scholar in Cancer Research at Stanford, J.E.C. is a David and Lucile Packard Foundation fellow and R.D. was supported by fellowships from the Stanford Dean’s Fund and Alex’s Lemonade Stand Foundation.

Author information

Affiliations

Authors

Contributions

R.R. and R.D. designed the project. B.M.T. and C.E.S. designed and synthesized LasA, LasF, Ces-73, Ces-24a and Ces-24b. R.D. and J.E.C. executed the haploid genetic screens. R.D. and H.Q.N. performed the mass spectrometry experiments. R.D., A.P. and Y.-H.G. designed and constructed the LDAH variants. R.D. performed all other experiments and analyses presented in the paper. R.R. and R.D. wrote the paper and all the authors edited and commented on the paper.

Corresponding author

Correspondence to Rajat Rohatgi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Video 1

Movie of live Hap1 cells expressing LDAH-GFP.

Supplementary Data 1

Compiled data from the haploid screens (see Fig. 1c and Supplementary Figs. 1 and 2a).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Stivala, C.E., Nguyen, H.Q. et al. Lipid droplets can promote drug accumulation and activation. Nat Chem Biol 16, 206–213 (2020). https://doi.org/10.1038/s41589-019-0447-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing