Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aromatization of natural products by a specialized detoxification enzyme

Abstract

In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the methylglyoxal–glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel aromatics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Generation and aromatization of reactive carbonyl species in the gossypol pathway.
Fig. 2: The SPG and GLXI activities in aromatization.
Fig. 3: Loss of GSH-binding sites and GLXI activity in SPG.
Fig. 4: Transformation of mycotoxin by SPG.

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the paper and its Supplementary Information. The FLNC reads and HiSeq transcriptomic reads generated in this study have been deposited in the NCBI SRA database under accession number PRJNA493958. Moreover, datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

All code used in this study is available from the corresponding author upon reasonable request.

References

  1. 1.

    Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Dixon, R. A. Natural products and plant disease resistance. Nature 411, 843–847 (2001).

    CAS  PubMed  Google Scholar 

  3. 3.

    Zhang, Y. et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat. Commun. 6, 8635 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Caputi, L. et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360, 1235–1239 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Weng, J. K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hovatta, I. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438, 662–666 (2005).

    CAS  PubMed  Google Scholar 

  8. 8.

    Rabbani, N. & Thornalley, P. J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes 63, 50–52 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Morcos, M. et al. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 7, 260–269 (2008).

    CAS  PubMed  Google Scholar 

  10. 10.

    Sankaranarayanan, S. et al. Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int. J. Mol. Sci. 18, 898 (2017).

    PubMed Central  Google Scholar 

  11. 11.

    Sankaranarayanan, S., Jamshed, M. & Samuel, M. A. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat. Plants 1, 15185 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Thornalley, P. J. Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31, 1343–1348 (2003).

    CAS  PubMed  Google Scholar 

  13. 13.

    Gadelha, I. C., Fonseca, N. B., Oloris, S. C., Melo, M. M. & Soto-Blanco, B. Gossypol toxicity from cottonseed products. ScientificWorldJournal 2014, 231635 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Keshmiri-Neghab, H. & Goliaei, B. Therapeutic potential of gossypol: an overview. Pharm. Biol. 52, 124–128 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Tian, X. et al. A gossypol biosynthetic intermediate disturbs plant defence response. Philos. Trans. R. Soc. Lond. B 374, 20180319 (2019).

    CAS  Google Scholar 

  16. 16.

    Tian, X. et al. Characterization of gossypol biosynthetic pathway. Proc. Natl Acad. Sci. USA 115, E5410–E5418 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Knutsen, H. K. et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 15, e04718 (2017).

    Google Scholar 

  18. 18.

    Pestka, J. J. Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 137, 283–298 (2007).

    CAS  Google Scholar 

  19. 19.

    Ma, D. et al. Genetic basis for glandular trichome formation in cotton. Nat. Commun. 7, 10456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wang, J. Y. et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl. Environ. Microbiol. 70, 4989–4995 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lusas, E. W. & Jividen, G. M. Glandless cottonseed: a review of the first 25 years of processing and utilization research. J. Am. Oil Chem. Soc. 64, 839–854 (1987).

    CAS  Google Scholar 

  22. 22.

    Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cameron, A. D., Olin, B., Ridderstrom, M., Mannervik, B. & Jones, T. A. Crystal structure of human glyoxalase I–evidence for gene duplication and 3D domain swapping. EMBO J. 16, 3386–3395 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cameron, A. D. et al. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry 38, 13480–13490 (1999).

    CAS  PubMed  Google Scholar 

  26. 26.

    Ridderstrom, M., Cameron, A. D., Jones, T. A. & Mannervik, B. Mutagenesis of residue 157 in the active site of human glyoxalase I. Biochem. J. 328, 231–235 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Li, F. et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33, 524–530 (2015).

    PubMed  Google Scholar 

  29. 29.

    Zhang, T. et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 33, 531–537 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Schmitz, J. et al. Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to cellular sugar status. Plant Cell 29, 3234–3254 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006).

    CAS  Google Scholar 

  32. 32.

    Means, G. D. et al. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J. Biol. Chem. 264, 19385–19391 (1989).

    CAS  PubMed  Google Scholar 

  33. 33.

    Wu, X. et al. Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities. FEBS J. 274, 1172–1182 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    Sonawane, P. D. et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc. Natl Acad. Sci. USA 115, E5419–E5428 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Ji, C., Fan, Y. & Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2, 127–133 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ibrahim, S. R. M. & Mohamed, G. A. Naturally occurring naphthalenes: chemistry, biosynthesis, structural elucidation, and biological activities. Phytochem. Rev. 15, 279–295 (2016).

    CAS  Google Scholar 

  37. 37.

    Taura, F. et al. A novel class of plant type III polyketide synthase involved in orsellinic acid biosynthesis from Rhododendron dauricum. Front. Plant Sci. 7, 1452 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tzin, V. & Galili, G. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arabidopsis Book 8, e0132 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sharifi, N. Minireview: androgen metabolism in castration-resistant prostate cancer. Mol. Endocrinol. 27, 708–714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Brown, G. D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15, 7603–7698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Czechowski, T. et al. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc. Natl Acad. Sci. USA 113, 15150–15155 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Rabbani, N., Xue, M. & Thornalley, P. J. Activity, regulation, copy number and function in the glyoxalase system. Biochem. Soc. Trans. 42, 419–424 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hackl, T., Hedrich, R., Schultz, J. & Forster, F. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS  PubMed  Google Scholar 

  46. 46.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Google Scholar 

  48. 48.

    Shan, C. M. et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 5, 5519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Luo, P., Wang, Y. H., Wang, G. D., Essenberg, M. & Chen, X. Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28, 95–104 (2001).

    CAS  PubMed  Google Scholar 

  50. 50.

    Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 51–64 (1996).

    CAS  PubMed  Google Scholar 

  51. 51.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Hu, S. Bu and Y. Liu for help with GC–MS, NMR and Q-TOF analyses and X. Hao, B. Xu, B. Yang, C. Shi, Y. Hu, Y. Li, L. Chen and K. Zhai for their kind and generous help. We also thank D. Nelson for naming the CYP protein. The research was supported by grants from the National Natural Science Foundation of China (Nos. 31788103, 31690092 to X.-Y.C. and No. 31700263 to J.X.L.), the Ministry of Agriculture of China (grant No. 2016ZX08010002-005 to L.J.W.), the Ministry of Science and Technology of China (grant No. 2016YFD0100500 to L.J.W.) and the Chinese Academy of Sciences (grant Nos. XDB11030000, QYZDY-SSW-SMC026 and 153D31KYSB20160074 to X.-Y.C.).

Author information

Affiliations

Authors

Contributions

J.-Q.H., X.F., X.T. and X.-Y.C. designed and managed the study. C.M., X.F., X.T., W.-M.S., Q.Z. and L.-J.W. discussed results and provided advice. J.-Q.H. isolated genes and characterized enzymes. J.-Q.H., X.T., J.-L.L., X.-X.G., R.A. and F.-Y.C. isolated compounds and performed LC–MS and GC–MS analyses. X.F. and Z.F. analyzed the NMR data. J.-Q.H., P.C. and Q.Z. performed bioinformatic analysis. J.-X.L. modeled the enzymes. X.-Y.C., J.-Q.H., X.F. and C.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Xiao-Ya Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1 and 2, Figs. 1–9 and Note.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, JQ., Fang, X., Tian, X. et al. Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 16, 250–256 (2020). https://doi.org/10.1038/s41589-019-0446-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing