Brief Communication | Published:

MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition

Abstract

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Boucher, D. et al. J. Exp. Med. 215, 827–840 (2018).

  2. 2.

    Broz, P. & Dixit, V. M. Nat. Rev. Immunol. 16, 407–420 (2016).

  3. 3.

    Prochnicki, T., Mangan, M. S. & Latz, E. F1000Res. 5, 1469 (2016).

  4. 4.

    Guo, H., Callaway, J. B. & Ting, J. P. Nat. Med. 21, 677–687 (2015).

  5. 5.

    Broderick, L. et al. Annu. Rev. Pathol. 10, 395–424 (2015).

  6. 6.

    De Nardo, D., De Nardo, C. M. & Latz, E. Am. J. Pathol. 184, 42–54 (2014).

  7. 7.

    Coll, R. C. et al. Nat. Med. 21, 248–255 (2015).

  8. 8.

    van Hout, G. P. et al. Eur. Heart. J. 38, 828–836 (2017).

  9. 9.

    Primiano, M. J. et al. J. Immunol. 197, 2421–2433 (2016).

  10. 10.

    Kim, R. Y. et al. Am. J. Respir. Crit. Care Med. 196, 283–297 (2017).

  11. 11.

    Tate, M. D. et al. Sci. Rep. 6, 27912 (2016).

  12. 12.

    Kammoun, H. L. et al. Mol. Metab. 10, 66–73 (2018).

  13. 13.

    Moffat, J. G. et al. Nat. Rev. Drug Discov. 16, 531–543 (2017).

  14. 14.

    Gross, C. J. et al. Immunity 45, 761–773 (2016).

  15. 15.

    Gaidt, M. M. et al. Immunity 44, 833–846 (2016).

  16. 16.

    Shi, H. et al. Nat. Immunol. 17, 250–258 (2016).

  17. 17.

    White, C. S., Lawrence, C. B., Brough, D. & Rivers-Auty, J. Brain Pathol. 27, 223–234 (2017).

  18. 18.

    Van Gorp, H. et al. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

  19. 19.

    Lomenick, B. et al. Proc. Natl Acad. Sci. USA 106, 21984–21989 (2009).

  20. 20.

    Schroder, K. & Tschopp, J. Cell 140, 821–832 (2010).

  21. 21.

    Duncan, J. A. et al. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

  22. 22.

    Hu, Z. et al. Science 341, 172–175 (2013).

  23. 23.

    Tenthorey, J. L. et al. Science 358, 888–893 (2017).

  24. 24.

    Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Biochim. Biophys. Acta 1823, 2–14 (2012).

  25. 25.

    Tapia-Abellán, A. et al. Nat. Chem. Biol. https://doi.org/10.1038/s41589-019-0278-6 (2019).

  26. 26.

    Mariathasan, S. et al. Nature 430, 213–218 (2004).

  27. 27.

    Schroder, K. et al. Proc. Natl Acad. Sci. USA 109, E944–E953 (2012).

  28. 28.

    Lomenick, B., Jung, G., Wohlschlegel, J. A. & Huang, J. Curr. Protoc. Chem. Biol. 3, 163–180 (2011).

  29. 29.

    Pai, M. Y. et al. Methods Mol. Biol. 1263, 287–298 (2015).

  30. 30.

    Xu, C. P. et al. Chem. Biol. 16, 980–989 (2009).

  31. 31.

    Mackinnon, A. L. & Taunton, J. Curr. Protoc. Chem. Biol. 1, 55–73 (2009).

  32. 32.

    Stols, L. et al. Protein Expr. Purif. 25, 8–15 (2002).

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council of Australia (Fellowship 1138466 and Program Grant no. 1071659 to M.P.J.; Fellowship no. 1141131 to K.S.; Project Grant no. 1086786 to A.A.B.R. and K.S.), the Australian Research Council (Fellowship no. FT130100361 to K.S.), the Institute for Molecular Bioscience (Research Advancement Award to J.H.) and The University of Queensland (Postdoctoral Fellowships to R.C.C. and D.B.; Research Scholarship to J.H.). We thank D. Edwards for chemical purification and analytical support, M. Cooper (University of Queensland) for providing MCC950 and K. Stacey (University of Queensland) for providing ASC-deficient mice.

Author information

R.C.C. designed and performed most experiments. J.R.H. conceived and synthesized the photoaffinity probe and performed labeling experiments. C.J.D. and M.P.J. designed and performed SPR analysis. A.Z. designed and cloned the NLRP3 expression plasmids and mutants. D.B. expressed and purified recombinant NLRP3 and assisted with experimental design. N.L.M synthesized the photoaffinity probe. J.L.C. and J.A.F. assisted with the expression and purification of recombinant NEK7, A.A.B.R. formulated MCC950, conceived the photoaffinity probe and expressed and purified recombinant NEK7. A.A.B.R. and K.S. designed experiments and supervised the study. R.C.C and K.S wrote the manuscript, with assistance from J.R.H. and A.A.B.R. and input from all authors.

Competing interests

R.C.C., A.A.B.R. and K.S. are co-inventors on patent applications for NLRP3 inhibitors (WO2018215818, WO2017140778 and WO2016131098), which are licensed to Inflazome Ltd, a company headquartered in Dublin, Ireland. Inflazome is developing drugs that target the NLRP3 inflammasome to address unmet clinical needs in inflammatory disease.

Correspondence to Rebecca C. Coll or Avril A. B. Robertson or Kate Schroder.

Supplementary information

  1. Supplementary Information

    Supplementary Table 1, Supplementary Figures 1–15

  2. Reporting Summary

  3. Supplementary Note

    Synthetic Procedures

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Fig. 1: MCC950 directly interacts with NLRP3.
Fig. 2: MCC950 interacts with the NACHT domain of NLRP3.
Fig. 3: MCC950 binds non-covalently to NLRP3, proximal to the Walker B motif and blocks NLRP3 ATPase activity.