Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis

Abstract

Chondroitin sulfate (CS) and heparan sulfate (HS) are glycosaminoglycans that both bind the receptor-type protein tyrosine phosphatase PTPRσ, affecting axonal regeneration. CS inhibits axonal growth, while HS promotes it. Here, we have prepared a library of HS octasaccharides and, together with synthetic CS oligomers, we found that PTPRσ preferentially interacts with CS-E—a rare sulfation pattern in natural CS—and most HS oligomers bearing sulfate and sulfamate groups. Consequently, short and long stretches of natural CS and HS, respectively, bind to PTPRσ. CS activates PTPRσ, which dephosphorylates cortactin—herein identified as a new PTPRσ substrate—and disrupts autophagy flux at the autophagosome–lysosome fusion step. Such disruption is required and sufficient for dystrophic endball formation and inhibition of axonal regeneration. Therefore, sulfation patterns determine the length of the glycosaminoglycan segment that bind to PTPRσ and define the fate of axonal regeneration through a mechanism involving PTPRσ, cortactin and autophagy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The synthetic oligosaccharides used in this study
Fig. 2: Determination of the receptor-binding structures of sulfated glycans by SPR
Fig. 3: Sulfated glycans regulate PTPRσ
Fig. 4: Abnormal accumulation of autophagosomes in dystrophic endballs by disrupted autophagy flux
Fig. 5: Disruption of autophagy flux induce dystrophic endballs
Fig. 6: Cortactin is a substrate for PTPRσ

Data availability

Source data for Fig. 4a and Supplementary Fig. 5 have been provided as Supplementary Videos 14. All other data that support the conclusions are available from the authors on request.

References

  1. 1.

    Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Margolis, R. K. & Margolis, R. U. Nervous tissue proteoglycans. Experientia 49, 429–446 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    Inatani, M., Irie, F., Plump, A. S., Tessier-Lavigne, M. & Yamaguchi, Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–1046 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Imagama, S. et al. Keratan sulfate restricts neural plasticity after spinal cord injury. J. Neurosci. 31, 17091–17102 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Wang, L. & Denburg, J. L. A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach. Neuron 8, 701–714 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Shen, Y. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Aricescu, A. R., McKinnell, I. W., Halfter, W. & Stoker, A. W. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol. Cell Biol. 22, 1881–1892 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Fisher, D. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J. Neurosci. 31, 14051–14066 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Johnson, K. G. et al. The HSPGs syndecan and dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517–531 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Coles, C. H. et al. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 332, 484–488 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Katagiri, Y. et al. Identification of novel binding sites for heparin in receptor protein-tyrosine phosphatase (RPTPσ): implications for proteoglycan signaling. J. Biol. Chem. 293, 11639–11647 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Hu, Y. P. et al. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. Nat. Chem. 3, 557–563 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Zulueta, M. M. et al. α-Glycosylation by d-glucosamine-derived donors: synthesis of heparosan and heparin analogues that interact with mycobacterial heparin-binding hemagglutinin. J. Am. Chem. Soc. 134, 8988–8995 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Hu, Y. P. et al. Divergent synthesis of 48 heparan sulfate-based disaccharides and probing the specific sugar-fibroblast growth factor-1 interaction. J. Am. Chem. Soc. 134, 20722–20727 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Brown, J. M. et al. A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc. Natl Acad Sci. USA 109, 4768–4773 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Dickendesher, T. L. et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat. Neurosci. 15, 703–712 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Tamura, J., Neumann, K. W., Kurono, S. & Ogawa, T. Synthetic approach towards sulfated chondroitin di-, tri- and tetrasaccharides corresponding to the repeating unit. Carbohydr. Res. 305, 43–63 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    Tamura, J. et al. Synthesis and interaction with midkine of biotinylated chondroitin sulfate tetrasaccharides. Bioorg. Med. Chem. Lett. 22, 1371–1374 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Tamura, J., Nakada, Y., Taniguchi, K. & Yamane, M. Synthesis of chondroitin sulfate E octasaccharide in a repeating region involving an acetamide auxiliary. Carbohydr. Res. 343, 39–47 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Properzi, F. et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur. J. Neurosci. 21, 378–390 (2005).

    Article  Google Scholar 

  26. 26.

    Properzi, F. et al. Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur. J. Neurosci. 27, 593–604 (2008).

    Article  Google Scholar 

  27. 27.

    Tom, V. J., Steinmetz, M. P., Miller, J. H., Doller, C. M. & Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Ramón y Cajal, S. Degeneration and Regeneration of the Nervous System. (Oxford Univ. Press, 1928).

  29. 29.

    Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell. Biol. 196, 407–417 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Xie, Y. et al. Protein-tyrosine phosphatase (PTP) wedge domain peptides: a novel approach for inhibition of PTP function and augmentation of protein-tyrosine kinase function. J. Biol. Chem. 281, 16482–16492 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Lang, B. T. et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518, 404–408 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Faux, C. et al. PTPsigma binds and dephosphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta 1773, 1689–1700 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Tehrani, S., Tomasevic, N., Weed, S., Sakowicz, R. & Cooper, J. A. Src phosphorylation of cortactin enhances actin assembly. Proc. Natl Acad. Sci. USA 104, 11933–11938 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Hasegawa, J. et al. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 35, 1853–1867 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    He, Y. et al. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol. Biol. Cell 26, 3229–3244 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Leveugle, B. et al. Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J. Neurochem. 70, 736–744 (1998).

    CAS  Article  Google Scholar 

  42. 42.

    Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Knöferle, J. et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc. Natl Acad Sci. USA 107, 6064–6069 (2010).

    Article  Google Scholar 

  46. 46.

    Ribas, V. T. & Lingor, P. Autophagy in degenerating axons following spinal cord injury: evidence for autophagosome biogenesis in retraction bulbs. Neural. Regen. Res 10, 198–200 (2015).

    Article  Google Scholar 

  47. 47.

    He, M. et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc. Natl Acad. Sci. USA 113, 11324–11329 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Martin, K. R. et al. Identification of PTPsigma as an autophagic phosphatase. J. Cell Sci. 124, 812–819 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Ohtake, Y. et al. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci. Rep. 6, 37152 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Ignelzi, M. A., Miller, D. R., Soriano, P. & Maness, P. F. Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12, 873–884 (1994).

    CAS  Article  Google Scholar 

  51. 51.

    Ito, A. et al. The subcellular localization and activity of cortactin is regulated by acetylation and interaction with Keap1. Sci. Signal. 8, ra120 (2015).

    Article  Google Scholar 

  52. 52.

    Okada, M. et al. Biosynthesis of heparan sulfate in EXT1‐deficient cells. Biochem. J. 428, 463–471 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Kuboyama, T. Tojima and H. Kamiguchi (RIKEN BSI) for their technical guidance with the primary culture of DRG neurons. The expression vector for cortactin was kindly provided by M. Yoshida (RIKEN). We also thank N. Sugiura (Aichi Medical University) for his critical comment on the biochemical data. We wish to acknowledge the Division for Medical Research Engineering, Nagoya University School of Medicine, for the technical support during the electron microscopy and SPR assay. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (KAKENHHI Grant No. 23110002 to K.K.) and a Grant-in-Aid for Scientific Research (KAKENHHI Grant No. 16H05139 to K.K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and by a Grant-in-Aid for Young Scientists (KAKENHI Grant No. 26860209 to K.S.) from the Japan Society for the Promotion of Science (JSPS), Japan and by the Ministry of Science and Technology, Taiwan (grant nos. MOST 106-2745-M-001-001-ASP, MOST 106-2113-M259-009, MOST 106-0210-01-15-02 and MOST 106-2113-M-001-009-MY2 to S.C.H) and Academia Sinica (grant no. AS-IA-104-L04 to S.C.H.).

Author information

Affiliations

Authors

Contributions

K.S., T.O. and K.K. designed and performed biological experiments. Y.-C.K., C.-F.T., M.M.L.Z. and A.B. synthesized HS oligosaccharides under supervision by S.C.H. Y.G., S.N. and H.K. contributed biochemical experiments. M.M., Y.I., and K.U. contributed in vivo SCI experiments. J.-I.T. synthesized CS oligosaccharides. K.S., T.O., M.M.L.Z. and K.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shang-Cheng Hung or Kenji Kadomatsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figs. 1–19, Supplementary Video captions.

Reporting Summary

Supplementary Note

Synthetic Procedures

Supplementary Video 1

Live imaging of growth cones.

Supplementary Video 2

Live imaging of a dystrophic endball.

Supplementary Video 3

Live imaging of retrograde transport of autophagosomes in growth cones.

Supplementary Video 4

Live imaging of retrograde transport of autophagosomes in a dystrophic endball.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, K., Ozaki, T., Ko, Y. et al. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat Chem Biol 15, 699–709 (2019). https://doi.org/10.1038/s41589-019-0274-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing