Structure of McsB, a protein kinase for regulated arginine phosphorylation


Protein phosphorylation regulates key processes in all organisms. In Gram-positive bacteria, protein arginine phosphorylation plays a central role in protein quality control by regulating transcription factors and marking aberrant proteins for degradation. Here, we report structural, biochemical, and in vivo data of the responsible kinase, McsB, the founding member of an arginine-specific class of protein kinases. McsB differs in structure and mechanism from protein kinases that act on serine, threonine, and tyrosine residues and instead has a catalytic domain related to that of phosphagen kinases (PhKs), metabolic enzymes that phosphorylate small guanidino compounds. In McsB, the PhK-like phosphotransferase domain is structurally adapted to target protein substrates and is accompanied by a novel phosphoarginine (pArg)-binding domain that allosterically controls protein kinase activity. The identification of distinct pArg reader domains in this study points to a remarkably complex signaling system, thus challenging simplistic views of bacterial protein phosphorylation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of the protein arginine kinase McsB.
Fig. 2: Catalytic mechanism and mutational analysis of McsB.
Fig. 3: Dimerization and putative negative cooperativity in McsB.
Fig. 4: The DD of McsB and the C-terminal domain of CtsR are pArg-binding domains.
Fig. 5: Allosteric stimulation of McsB by pArg binding.
Fig. 6: Organization of the McsB protein arginine kinase and the pArg signaling system.

Data availability

Atomic coordinates and structure factors have been deposited in the Protein Data Bank (PDB) under accession codes 6FH1 (McsB), 6FH2 (McsB–AMP-PN), 6FH3 (McsB-pArg), 6FH4 (Δ1–75 CtsR-pArg). All other source data are included in the paper or will be provided upon reasonable request.


  1. 1.

    Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Hunter, T. Signaling–2000 and beyond. Cell 100, 113–127 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    Eckhart, W., Hutchinson, M. A. & Hunter, T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18, 925–933 (1979).

    CAS  Article  Google Scholar 

  5. 5.

    Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646 (1992).

    CAS  Article  Google Scholar 

  6. 6.

    Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    Jin, J. & Pawson, T. Modular evolution of phosphorylation-based signalling systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2540–2555 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Pallen, M., Chaudhuri, R. & Khan, A. Bacterial FHA domains: neglected players in the phospho-threonine signalling game? Trends Microbiol. 10, 556–563 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Hoch, J. A. & Varughese, K. I. Keeping signals straight in phosphorelay signal transduction. J. Bacteriol. 183, 4941–4949 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Elsholz, A. K. et al. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc. Natl Acad. Sci. USA 109, 7451–7456 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Schmidt, A. et al. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response. Mol. Cell Proteomics 13, 537–550 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Trentini, D. B. et al. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539, 48–53 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Trentini, D. B., Fuhrmann, J., Mechtler, K. & Clausen, T. Chasing phosphoarginine proteins: development of a selective enrichment method using a phosphatase trap. Mol. Cell Proteomics 13, 1953–1964 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Bäsell, K. et al. The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int. J. Med. Microbiol. 304, 121–132 (2014).

    Article  Google Scholar 

  15. 15.

    Junker, S. et al. Spectral library based analysis of arginine phosphorylations in Staphylococcus aureus. Mol. Cell Proteomics 17, 335–348 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Mijakovic, I., Grangeasse, C. & Turgay, K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol. Rev. 40, 398–417 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Wozniak, D. J., Tiwari, K. B., Soufan, R. & Jayaswal, R. K. The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus. Microbiology 158, 2568–2576 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Singh, L. K. et al. P. clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ. Microbiol. 17, 855–865 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Schumann, W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 21, 959–968 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Fuhrmann, J. et al. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324, 1323–1327 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Fuhrmann, J. et al. Structural basis for recognizing phosphoarginine and evolving residue-specific protein phosphatases in gram-positive bacteria. Cell Rep. 3, 1832–1839 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Kruger, E., Msadek, T., Ohlmeier, S. & Hecker, M. The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143, 1309–1316 (1997). Pt 4-1309.

    Article  Google Scholar 

  23. 23.

    Suzuki, T., Soga, S., Inoue, M. & Uda, K. Characterization and origin of bacterial arginine kinases. Int. J. Biol. Macromol. 57, 273–277 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Ellington, W. R. Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289–325 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Zhou, G. et al. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl Acad. Sci. USA 95, 8449–8454 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Yousef, M. S., Fabiola, F., Gattis, J. L., Somasundaram, T. & Chapman, M. S. Refinement of the arginine kinase transition-state analogue complex at 1.2 A resolution: mechanistic insights. Acta Crystallogr. D Biol. Crystallogr. 58, 2009–2017 (2002).

    Article  Google Scholar 

  27. 27.

    Summerton, J. C., Evanseck, J. D. & Chapman, M. S. Hyperconjugation-mediated solvent effects in phosphoanhydride bonds. J. Phys. Chem. A 116, 10209–10217 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Pruett, P. S. et al. The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278, 26952–26957 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Gattis, J. L., Ruben, E., Fenley, M. O., Ellington, W. R. & Chapman, M. S. The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Biochemistry 43, 8680–8689 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Kruger, E., Zuhlke, D., Witt, E., Ludwig, H. & Hecker, M. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 20, 852–863 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    Yousef, M. S. et al. Induced fit in guanidino kinases—comparison of substrate-free and transition state analog structures of arginine kinase. Protein Sci. 12, 103–111 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    Azzi, A., Clark, S. A., Ellington, W. R. & Chapman, M. S. The role of phosphagen specificity loops in arginine kinase. Protein Sci. 13, 575–585 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Suzuki, T., Kawasaki, Y., Furukohri, T. & Ellington, W. R. Evolution of phosphagen kinase. VI. Isolation, characterization and cDNA-derived amino acid sequence of lombricine kinase from the earthworm Eisenia foetida, and identification of a possible candidate for the guanidine substrate recognition site. Biochim. Biophys. Acta 1343, 152–159 (1997).

    CAS  Article  Google Scholar 

  34. 34.

    Davulcu, O., Flynn, P. F., Chapman, M. S. & Skalicky, J. J. Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme. Structure 17, 1356–1367 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K. & Hecker, M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24, 3435–3445 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Beveridge, R. et al. A mass-spectrometry-based framework to define the extent of disorder in proteins. Anal. Chem. 86, 10979–10991 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Kim, T. H. et al The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355, (2017).

    Article  Google Scholar 

  38. 38.

    Dumas, B. R., Brignon, G., Grosclaude, F. & Mercier, J. C. Structure primaire de la caséine β bovine: séquence complète. Eur. J. Biochem. 25, 505–514 (1972).

    Article  Google Scholar 

  39. 39.

    Kenyon, G. L. Creatine kinase shapes up. Nature 381, 281–282 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    Knighton, D. R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991).

    CAS  Article  Google Scholar 

  41. 41.

    Endicott, J. A., Noble, M. E. & Johnson, L. N. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81, 587–613 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Brandman, O., Ferrell, J. E. Jr., Li, R. & Meyer, T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310, 496–498 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Hunter, T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2513–2516 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Cianci, M. et al. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. J. Synchrotron Radiat. 24, 323–332 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystalllogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. 48.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 60, 2126–2132 (2004).

    Google Scholar 

  49. 49.

    Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  51. 51.

    Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. (2017).

  53. 53.

    Pei, J., Tang, M. & Grishin, N. V. PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res. 36, W30–W34 (2008).

    CAS  Article  Google Scholar 

  54. 54.

    Maiti, R., Van Domselaar, G. H., Zhang, H. & Wishart, D. S. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, W590–W594 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    Antelmann, H. et al. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J. Bacteriol. 179, 7251–7256 (1997).

    CAS  Article  Google Scholar 

  56. 56.

    Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van ‘t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212 (2007).

    CAS  Article  Google Scholar 

  59. 59.

    Norby, J. G. Coupled assay of Na+, K+-ATPase activity. Methods Enzymol. 156, 116–119 (1988).

    CAS  Article  Google Scholar 

  60. 60.

    Heuck, A. et al. Structural basis for the disaggregase activity and regulation of Hsp104. eLife 5, e21516 (2016).

    Article  Google Scholar 

Download references


We thank R. Huber and all members of the Clausen group for remarks on the manuscript and discussions, J. Leodolter and M. Madalinski for support in preparing pArg-containing peptides, A. Schleiffer for help with bioinformatic analysis, A. Sedivy and P. Stolt-Bergner for assistance with CD spectroscopy measurements, N. Stanley-Wall (University of Dundee) for pMAD plasmid and advice on mutagenesis in B. subtilis, and staff of beamlines at ESRF (Grenoble), SLS (Villigen), and DESY (Hamburg) for excellent help during data collection. This work was supported by a grant from the European Research Council (AdG 694978, to T.C.). The IMP is supported by Boehringer Ingelheim.

Author information




M.J.S. and T.C. designed and performed experiments, analyzed data, and wrote the paper with input from all authors; B.H., A.H. L.D.V., R.K., K.H., V.T., K.R., and A.M. helped with biochemical and structural analyses; R.B and K.M. with mass spectrometric measurements.

Corresponding author

Correspondence to Tim Clausen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–12

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suskiewicz, M.J., Hajdusits, B., Beveridge, R. et al. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat Chem Biol 15, 510–518 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing