Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular tools for imaging and recording neuronal activity

Abstract

To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of molecular processes underlying neuronal activation.
Fig. 2: Existing genetically encoded voltage indicator (GEVI) designs.
Fig. 3: Chronic cellular-resolution calcium imaging in freely-moving mice.
Fig. 4: Whole-brain cellular-resolution calcium imaging in a larval zebrafish.
Fig. 5: Schematics of genetically encoded pH and neurotransmitter indicators.
Fig. 6: IEG-based transcriptional reporters of activated neurons.
Fig. 7: Ca2+- and light-gated transcriptional reporters of activated neurons.

References

  1. 1.

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). This is the first optogenetic paper using channelrhodopsin demonstrating robust light-stimulated neuronal activation.

    CAS  PubMed  Google Scholar 

  2. 2.

    Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Google Scholar 

  4. 4.

    Burt, R. S. A note on social capital and network content. Soc. Networks 19, 355–373 (1997).

    Google Scholar 

  5. 5.

    Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013). This is the first report of whole-brain functional imaging of larval zebrafish at cellular resolution.

    CAS  PubMed  Google Scholar 

  7. 7.

    Chhetri, R. K. et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12, 1171–1178 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kim, T. H. et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 17, 3385–3394 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kim, C. K. et al. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell 170, 1013–1027.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Allen, W. E. et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Moser, E. I., Kropff, E. & Moser, M.-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    CAS  PubMed  Google Scholar 

  15. 15.

    Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999).

    CAS  PubMed  Google Scholar 

  17. 17.

    Helmchen, F., Borst, J. G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kuhn, B., Denk, W. & Bruno, R. M. In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc. Natl. Acad. Sci. USA 105, 7588–7593 (2008).

    CAS  PubMed  Google Scholar 

  19. 19.

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  PubMed  Google Scholar 

  20. 20.

    Akemann, W., Song, C., Mutoh, H. & Knöpfel, T. Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins. Neurophotonics 2, 021008 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    St-Pierre, F., Chavarha, M. & Lin, M. Z. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr. Opin. Chem. Biol. 27, 31–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hamel, E. J. O., Grewe, B. F., Parker, J. G. & Schnitzer, M. J. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86, 140–159 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xu, Y., Zou, P. & Cohen, A. E. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39, 1–10 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).

    CAS  PubMed  Google Scholar 

  25. 25.

    Akemann, W., Mutoh, H., Perron, A., Rossier, J. & Knöpfel, T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat. Methods 7, 643–649 (2010).

    CAS  PubMed  Google Scholar 

  26. 26.

    Mishina, Y., Mutoh, H., Song, C. & Knöpfel, T. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain. Front. Mol. Neurosci. 7, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

    CAS  PubMed  Google Scholar 

  29. 29.

    St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yang, H. H. H. et al. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166, 245–257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chamberland, S. et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 6, e25690 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014). This paper highlights the fastest GEVI reporter so far (QuasAr).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Flytzanis, N. C. et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 5, 4894 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gong, Y., Wagner, M. J., Zhong Li, J. & Schnitzer, M. J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat. Commun. 5, 3674 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Marshall, J. D. et al. Cell-type-specific optical recording of membrane voltage dynamics in freely moving mice. Cell 167, 1650–1662.e15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Broussard, G. J., Liang, R. & Tian, L. Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, 97 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    CAS  PubMed  Google Scholar 

  43. 43.

    Palmer, A. E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    CAS  PubMed  Google Scholar 

  44. 44.

    Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow cameleon-nano. Nat. Methods 7, 729–732 (2010).

    CAS  PubMed  Google Scholar 

  45. 45.

    Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    CAS  PubMed  Google Scholar 

  46. 46.

    Thestrup, T. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). This is the first report of the most widely applied GECI, GCaMP6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Muto, A., Ohkura, M., Abe, G., Nakai, J. & Kawakami, K. Real-time visualization of neuronal activity during perception. Curr. Biol. 23, 307–311 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7, e51286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kim, C. K. et al. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front. Neural Circuits 8, 138 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Dreosti, E., Odermatt, B., Dorostkar, M. M. & Lagnado, L. A genetically encoded reporter of synaptic activity in vivo. Nat. Methods 6, 883–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    de Juan-Sanz, J. et al. Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93, 867–881.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    CAS  PubMed  Google Scholar 

  62. 62.

    Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wu, J. et al. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chem. Neurosci. 4, 963–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Inoue, M. et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat. Methods 12, 64–70 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl.Acad. Sci. USA 102, 6131–6136 (2005).

    CAS  PubMed  Google Scholar 

  68. 68.

    Li, Y. & Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Wang, H., Jing, M. & Li, Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 50, 171–178 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Xie, Y. et al. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016).

    PubMed  Google Scholar 

  72. 72.

    Hefendehl, J. K. et al. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat. Commun. 7, 13441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    MacDonald, R. B., Kashikar, N. D., Lagnado, L. & Harris, W. A. A novel tool to measure extracellular glutamate in the zebrafish nervous system in vivo. Zebrafish 14, 284–286 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl. Acad. Sci. USA 115, 5594–5599 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Marvin, J. S. et al. Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods 15, 936–939 (2017).

    Google Scholar 

  76. 76.

    Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Masharina, A., Reymond, L., Maurel, D., Umezawa, K. & Johnsson, K. A fluorescent sensor for GABA and synthetic GABAB receptor ligands. J. Am. Chem. Soc. 134, 19026–19034 (2012).

    CAS  PubMed  Google Scholar 

  80. 80.

    Marvin, J.S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Preprint at https://doi.org/10.1101/322578 (2018).

  81. 81.

    Zhang, W. H. et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14, 861–869 (2018).

    CAS  PubMed  Google Scholar 

  82. 82.

    Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Fosque, B. F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015). This is the first report of a light- and calcium-gated neuronal activity integrator with a fluorescent protein photoconversion (CaMPARI).

    CAS  PubMed  Google Scholar 

  85. 85.

    Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). This is the first report of drug-gated immediate early gene reporters for recording neuronal activity.

    CAS  PubMed  Google Scholar 

  86. 86.

    Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Fujita, N. et al. Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38. Curr. Biol. 23, 2063–2070 (2013).

    CAS  PubMed  Google Scholar 

  89. 89.

    Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Gao, X. J. et al. A transcriptional reporter of intracellular Ca2+. Drosophila. Nat. Neurosci. 18, 917–925 (2015).

    CAS  PubMed  Google Scholar 

  91. 91.

    Kawashima, T. et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat. Methods 10, 889–895 (2013).

    CAS  PubMed  Google Scholar 

  92. 92.

    Sørensen, A. T. et al. A robust activity marking system for exploring active neuronal ensembles. eLife 5, 2 (2016).

    Google Scholar 

  93. 93.

    Sakurai, K. et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 92, 739–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Garner, A. R. et al. Generation of a synthetic memory trace. Science 335, 1513–1516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    CAS  PubMed  Google Scholar 

  96. 96.

    Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017). This is one of the two first reports of a light- and calcium-gated neuronal activity integrator with a transcriptional readout (FLARE).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H.-B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017). This is one of the two first reports of a light- and calcium-gated neuronal activity integrator with a transcriptional readout (Cal-Light).

    CAS  PubMed  Google Scholar 

  98. 98.

    Kim, M. W. et al. Time-gated detection of protein-protein interactions with transcriptional readout. eLife 6, e30233 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 11, 31–46 (2018).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alice Y. Ting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Kim, C.K. & Ting, A.Y. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 15, 101–110 (2019). https://doi.org/10.1038/s41589-018-0207-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing