Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete reconstitution of the diverse pathways of gentamicin B biosynthesis

A Publisher Correction to this article was published on 02 June 2020

An Author Correction to this article was published on 06 February 2019

This article has been updated

Abstract

Gentamicin B (GB), a valuable starting material for the preparation of the semisynthetic aminoglycoside antibiotic isepamicin, is produced in trace amounts by the wild-type Micromonospora echinospora. Though the biosynthetic pathway to GB has remained obscure for decades, we have now identified three hidden pathways to GB production via seven hitherto unknown intermediates in M. echinospora. The narrow substrate specificity of a key glycosyltransferase and the C6′-amination enzymes, in combination with the weak and unsynchronized gene expression of the 2′-deamination enzymes, limits GB production in M. echinospora. The crystal structure of the aminotransferase involved in C6′-amination explains its substrate specificity. Some of the new intermediates displayed similar premature termination codon readthrough activity but with reduced toxicity compared to the natural aminoglycoside G418. This work not only led to the discovery of unknown biosynthetic routes to GB, but also demonstrated the potential to mine new aminoglycosides from nature for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of DOS-containing aminoglycoside antibiotics.
Fig. 2: Two glycosylation steps to GA2 and its new analogs.
Fig. 3: The diverse pathways to the analogs of GA and GX2.
Fig. 4: The interconnecting C6′-amination and C2′-deamination pathways to GB.
Fig. 5: Analysis of C2′-deamination reactions catalyzed by GenJ-GenK2.
Fig. 6: Crystal structure of GenB1.

Similar content being viewed by others

Data availability

The sequences of genJ and genK2 genes have been deposited in the GenBank under accession numbers MG879478 (genJ); MG879479 (genK2). Atomic coordinates and structure factors of the reported crystal structures have been deposited in the Protein Data Bank under the accession codes 5Z83 (GenB1/PLP); 5Z8A (GenB1/PLP/JI-20A); 5Z8K (GenB1/PLP/NM).

Change history

  • 02 June 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 06 February 2019

    In the version of this article originally published, reference to another structure of GenB1 was omitted (Dow, G. T., Thoden, J. B., & Holden, H. M. The three-dimensional structure of NeoB: an aminotransferase involved in the biosynthesis of neomycin. Protein Sci. 27, 945–956 (2018)). This paper is now cited as reference 32, and “Another structure of GenB1 was also reported independently during the revision of this article32” was added to the text in the Discussion section. This error has been corrected in the PDF and HTML versions of the article.

References

  1. Park, S. R., Park, J. W., Ban, Y. H., Sohng, J. K. & Yoon, Y. J. 2-Deoxystreptamine-containing aminoglycoside antibiotics: recent advances in the characterization and manipulation of their biosynthetic pathways. Nat. Prod. Rep. 30, 11–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kondo, S. & Hotta, K. Semisynthetic aminoglycoside antibiotics: development and enzymatic modifications. J. Infect. Chemother. 5, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Umezawa, H., Umezawa, S., Tsuchiya, T. & Okazaki, Y. 3′,4′-dideoxy-kanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J. Antibiot. (Tokyo) 24, 485–487 (1971).

    Article  CAS  Google Scholar 

  5. Kawaguchi, H., Naito, T., Nakagawa, S. & Fujisawa, K. I. BB-K 8, a new semisynthetic aminoglycoside antibiotic. J. Antibiot. (Tokyo) 25, 695–708 (1972).

    Article  CAS  Google Scholar 

  6. Wright, J.J. Synthesis of 1-N-ethylsisomicin: a broad-spectrum semisynthetic aminoglycoside antibiotic. J. Chem. Soc. Chem. Commun. 1976, 206–208 (1976).

    Article  Google Scholar 

  7. Nagabhushan, T. L., Cooper, A. B., Tsai, H., Daniels, P. J. L. & Miller, G. H. The syntheses and biological properties of 1-N-(S-4-amino-2-hydroxybutyryl)-gentamicin B and 1-N-(S-3-amino-2-hydroxypropionyl)-gentamicin B. J. Antibiot. (Tokyo) 31, 681–687 (1978).

    Article  CAS  Google Scholar 

  8. Kondo, S., Iinuma, K., Yamamoto, H., Maeda, K. & Umezawa, H. Syntheses of 1-N-{(S)-4-amino-2-hydroxybutyryl}-kanamycin B and -3′,4′-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiot. (Tokyo) 26, 412–415 (1973).

    Article  CAS  Google Scholar 

  9. Becker, B. & Cooper, M. A. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 8, 105–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Stelzer, A. C. et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat. Chem. Biol. 7, 553–559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prayle, A. & Smyth, A. R. Aminoglycoside use in cystic fibrosis: therapeutic strategies and toxicity. Curr. Opin. Pulm. Med. 16, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Park, J. W., Ban, Y. H., Nam, S.-J., Cha, S.-S. & Yoon, Y. J. Biosynthetic pathways of aminoglycosides and their engineering. Curr. Opin. Biotechnol. 48, 33–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Park, J. W. et al. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7, 843–852 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Sucipto, H., Kudo, F. & Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51, 3428–3431 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Gao, W., Wu, Z., Sun, J., Ni, X. & Xia, H. Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering. PLoS One 12, e0181971 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Park, J. W. et al. Analytical profiling of biosynthetic intermediates involved in the gentamicin pathway of Micromonospora echinospora by high-performance liquid chromatography using electrospray ionization mass spectrometric detection. Anal. Chem. 79, 4860–4869 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Park, J. W. et al. Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc. Natl. Acad. Sci. USA 105, 8399–8404 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C. et al. Delineating the biosynthesis of gentamicinx2, the common precursor of the gentamicin C antibiotic complex. Chem. Biol. 22, 251–261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, H. J. et al. GenK-catalyzed C-6′ methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 135, 8093–8096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, J. et al. Specificity and promiscuity at the branch point in gentamicin biosynthesis. Chem. Biol. 21, 608–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu, Y. et al. Biosynthesis of epimers C2 and C2a in the gentamicin C complex. ChemBioChem 16, 1933–1942 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S. et al. Methyltransferases of gentamicin biosynthesis. Proc. Natl. Acad. Sci. USA 115, 1340–1345 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Wagman, G. H. et al. Chromatographic separation of some minor components of the gentamicin complex. J. Chromatogr. 70, 171–173 (1972).

    Article  CAS  Google Scholar 

  24. Testa, R. T. & Tilley, B. C. Biotransformation, a new approach to aminoglycoside biosynthesis: II. Gentamicin. J. Antibiot. (Tokyo) 29, 140–146 (1976).

    Article  CAS  Google Scholar 

  25. Kim, H. J., Liu, Y. N., McCarty, R. M. & Liu, H. W. Reaction catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-i-methionine methyltransferase in the biosynthetic pathway of gentamicin, proceeds with retention of configuration. J. Am. Chem. Soc. 139, 16084–16087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ni, X., Sun, Z., Gu, Y., Cui, H. & Xia, H. Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microb. Cell Fact. 15, 1 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chandrika, N. T. & Garneau-Tsodikova, S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MedChemComm 7, 50–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med. 2, 467–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Fujisawa, K., Hoshiya, T. & Kawaguchi, H. Aminoglycoside antibiotics. VII. Acute toxicity of aminoglycoside antibiotics. J. Antibiot. (Tokyo) 27, 677–681 (1974).

    Article  CAS  Google Scholar 

  30. Popovic, B. et al. Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis. Proteins 65, 220–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zachman-Brockmeyer, T. R., Thoden, J. B. & Holden, H. M. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci. 26, 1886–1892 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dow, G. T., Thoden, J. B. & Holden, H. M. The three-dimensional structure of NeoB: an aminotransferase involved in the biosynthesis of neomycin. Protein Sci. 27, 945–956 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nudelman, I. et al. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J. Med. Chem. 52, 2836–2845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nudelman, I. et al. Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg. Med. Chem. 18, 3735–3746 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Baradaran-Heravi, A. et al. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity. Proc. Natl. Acad. Sci. USA 114, 3479–3484 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y., Llewellyn, N. M., Giri, R., Huang, F. & Spencer, J. B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12, 665–675 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Llewellyn, N. M., Li, Y. & Spencer, J. B. Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem. Biol. 14, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Llewellyn, N. M. & Spencer, J. B. Chemoenzymatic acylation of aminoglycoside antibiotics. Chem. Commun. (Camb.) 32, 3786–3788 (2008).

    Article  CAS  Google Scholar 

  39. Hooper, I.R. The naturally occurring aminoglycoside antibiotics. in Handbook of experimental pharmacology. Vol. 62. Aminoglycoside antibiotics. (Umezawa, H. & Hooper, I.R. eds.) 1–35 (Springer-Verlag, Berlin, Heidelberg, Germany, 1982).

  40. Jones, D., Metzger, H. J., Schatz, A. & Waksman, S. A. Control of Gram-negative bacteria in experimental animals by streptomycin. Science 100, 103–105 (1944).

    Article  CAS  PubMed  Google Scholar 

  41. Doroghazi, J. R. & Metcalf, W. W. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14, 611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinstein, M. J. et al. Gentamicin, a new antibiotic complex from. Micromonospora. J. Med. Chem. 6, 463–464 (1963).

    Article  CAS  PubMed  Google Scholar 

  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2001).

    Google Scholar 

  44. Smirnova, N. & Reynolds, K. A. Engineered fatty acid biosynthesis in Streptomyces by altered catalytic function of β-ketoacyl-acyl carrier protein synthase III. J. Bacteriol. 183, 2335–2342 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song, J. Y. et al. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J. Biotechnol. 219, 57–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, England, 2000).

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 1.3r1 (2010).

  53. Weinstein, M. P et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed. (Clinical Laboratory Standards Institute: Wayne, Pa, USA, 2018).

  54. Patel, J. B. et al. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed., (Clinical Laboratory Standards Institute, Wayne, Pa, USA, 2018).

    Google Scholar 

  55. Murphy, G. J., Mostoslavsky, G., Kotton, D. N. & Mulligan, R. C. Exogenous control of mammalian gene expression via modulation of translational termination. Nat. Med. 12, 1093–1099 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant (2016R1A2A1A05005078; (Y.J.Y.) funded by the Ministry of Science and ICT, Cooperative Research Program for Agriculture Science & Technology Development (PJ01316001; M.C.S.) and (PJ013179; J.W.P.) was funded by Rural Development Administration, under the project titled “Development of biomedical materials based on marine proteins” funded by the Ministry of Oceans and Fisheries (S.-S.C.), Republic of Korea, and the National Institutes of Health (GM035906) and the Welch Foundation (F-1511), USA (H.-w.L.)

Author information

Authors and Affiliations

Authors

Contributions

Y.J.Y., H.-w.L, S.-S.C., and J.W.P. designed the research and wrote the paper. M.C.S. analyzed chemical structures. Y.H.B., J.-y.H., and H.-l.S. performed genetic and enzymatic experiments. H.J.K. performed chemical experiments. S.K.H. performed structural biological experiments. N.J.L. analyzed toxicity and biological activity.

Corresponding authors

Correspondence to Sun-Shin Cha, Hung-wen Liu or Yeo Joon Yoon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22 and Supplementary Tables 1–5

Reporting Summary

Supplementary Note

Synthetic procedures and structural characterization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, Y.H., Song, M.C., Hwang, Jy. et al. Complete reconstitution of the diverse pathways of gentamicin B biosynthesis. Nat Chem Biol 15, 295–303 (2019). https://doi.org/10.1038/s41589-018-0203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0203-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing