Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome editing by natural and engineered CRISPR-associated nucleases

Abstract

Over the last decade, research on distinct types of CRISPR systems has revealed many structural and functional variations. Recently, several novel types of single-polypeptide CRISPR-associated systems have been discovered including Cas12a/Cpf1 and Cas13a/C2c2. Despite distant similarities to Cas9, these additional systems have unique structural and functional features, providing new opportunities for genome editing applications. Here, relevant fundamental features of natural and engineered CRISPR–Cas variants are compared. Moreover, practical matters are discussed that are essential for dedicated genome editing applications, including nuclease regulation and delivery, target specificity, as well as host repair diversity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Modified Cas9 or sgRNA used to reduce off-targets.
Fig. 2: Modified Cas9 or sgRNA for regulation of active RNP (irreversible).
Fig. 3: Modified Cas9 or sgRNA for regulation of active RNP (reversible).
Fig. 4: Engineering the genome from a CRISPR–Cas9-induced targeted DNA double-strand break using distinct repair pathways.
Fig. 5: Guided base editing using dead Cas9.

References

  1. 1.

    Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  Google Scholar 

  3. 3.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This report shows that a crRNA–tracrRNA duplex can be engineered to cleave specific target sites.

    Article  CAS  Google Scholar 

  4. 4.

    Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  Google Scholar 

  5. 5.

    Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hochstrasser, M. L. et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Natl. Acad. Sci. USA 111, 6618–6623 (2014).

    Article  CAS  Google Scholar 

  7. 7.

    Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008). This study revealed that CRISPR functions by RNA-guided DNA interference and that CRISPR design allows the targeting of any DNA sequence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. cell 65, 618–630.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). This report shows, for the first time, that CRISPR functions as an adaptive immune system in prokaryotes.

    Article  CAS  Google Scholar 

  10. 10.

    Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  Google Scholar 

  11. 11.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). This report shows successful Cas9 genome editing in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). This report shows the characterization of a novel class 2 nuclease, Cas12a/Cpf1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gao, P., Yang, H., Rajashankar, K. R., Huang, Z. & Patel, D. J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233.e4 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Liu, L. et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 65, 310–322 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    O’Geen, H., Henry, I. M., Bhakta, M. S., Meckler, J. F. & Segal, D. J. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43, 3389–3404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang, J.-P. et al. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci. Rep. 6, 28566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chari, R., Mali, P., Moosburner, M. & Church, G. M. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12, 823–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  Google Scholar 

  33. 33.

    Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tang, W., Hu, J. H. & Liu, D. R. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8, 15939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hemphill, J., Borchardt, E. K., Brown, K., Asokan, A. & Deiters, A. Optical control of CRISPR/Cas9 gene editing. J. Am. Chem. Soc. 137, 5642–5645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Petris, G. et al. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat. Commun. 8, 15334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Oakes, B. L. et al. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat. Biotechnol. 34, 646–651 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Liu, K. I. et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 12, 980–987 (2016).

    Article  CAS  Google Scholar 

  46. 46.

    Maji, B. et al. Multidimensional chemical control of CRISPR-Cas9. Nat. Chem. Biol. 13, 9–11 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    Rose, J. C. et al. Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat. Methods 14, 891–896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112, 3570–3575 (2015).

    Article  CAS  Google Scholar 

  50. 50.

    Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    Article  CAS  Google Scholar 

  51. 51.

    Świat, M. A. et al. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res. 45, 12585–12598 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Vasileva, A. & Jessberger, R. Precise hit: adeno-associated virus in gene targeting. Nat. Rev. Microbiol. 3, 837–847 (2005).

    Article  CAS  Google Scholar 

  53. 53.

    Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341–355 (2011).

    Article  CAS  Google Scholar 

  54. 54.

    Gao, G., Vandenberghe, L. H. & Wilson, J. M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    Article  CAS  Google Scholar 

  55. 55.

    Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    Article  CAS  Google Scholar 

  56. 56.

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016). This report demonstrates in vivo AAV-mediated CRISPR–Cas9 delivery for the repair of the dystrophin gene defect in Mdx mice.

  58. 58.

    Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016). This report demonstrates efficient in vivo gene repair through systemic and intramuscular AAV injection.

    Article  CAS  Google Scholar 

  59. 59.

    Wright, A. V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl Acad. Sci. USA 112, 2984–2989 (2015).

    Article  CAS  Google Scholar 

  60. 60.

    Truong, D.-J. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Fine, E. J. et al. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci. Rep. 5, 10777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Li, J., Sun, W., Wang, B., Xiao, X. & Liu, X.-Q. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 19, 958–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  Google Scholar 

  65. 65.

    D’Astolfo, D. S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674–690 (2015).

    Article  CAS  Google Scholar 

  66. 66.

    Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  Google Scholar 

  67. 67.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Mueller, J., Kretzschmar, I., Volkmer, R. & Boisguerin, P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem. 19, 2363–2374 (2008).

    Article  CAS  Google Scholar 

  70. 70.

    Lundberg, M. & Johansson, M. Is VP22 nuclear homing an artifact? Nat. Biotechnol. 19, 713–714 (2001).

    Article  CAS  Google Scholar 

  71. 71.

    Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl. Acad. Sci. USA 112, 10437–10442 (2015).

    Article  CAS  Google Scholar 

  72. 72.

    Derdelinckx, J., Berneman, Z. N. & Cools, N. GMP-grade mRNA electroporation of dendritic cells for clinical use. Methods Mol. Biol. 1428, 139–150 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Xu, L. et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 24, 564–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  Google Scholar 

  75. 75.

    Mahiny, A. J. et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat. Biotechnol. 33, 584–586 (2015).

    Article  CAS  Google Scholar 

  76. 76.

    Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  Google Scholar 

  77. 77.

    Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 113, 2868–2873 (2016).

    Article  CAS  Google Scholar 

  78. 78.

    Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. 54, 12029–12033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Maurisse, R. et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 10, 9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Dokka, S., Toledo, D., Shi, X., Castranova, V. & Rojanasakul, Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. 17, 521–525 (2000).

    Article  CAS  Google Scholar 

  82. 82.

    Armeanu, S. et al. Optimization of nonviral gene transfer of vascular smooth muscle cells in vitro and in vivo. Mol. Ther. 1, 366–375 (2000).

    Article  CAS  Google Scholar 

  83. 83.

    Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    Article  CAS  Google Scholar 

  84. 84.

    Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Jasin, M. & Haber, J. E. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst.) 44, 6–16 (2016).

    Article  CAS  Google Scholar 

  86. 86.

    Bétermier, M., Bertrand, P. & Lopez, B. S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet. 10, e1004086 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Nakade, S. et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Kan, Y., Ruis, B., Takasugi, T. & Hendrickson, E. A. Mechanisms of precise genome editing using oligonucleotide donors. Genome Res. 27, 1099–1111 (2017). This paper is an elegant mechanistic study unraveling the different homology-directed repair pathways that are used during precision gene editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Renaud, J.-B. et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14, 2263–2272 (2016).

    Article  CAS  Google Scholar 

  91. 91.

    Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016). This report describes how the introduction of blocking mutations and optimization of distance effects increase the efficiency of CRISPR–Cas-mediated genome editing.

    Article  CAS  Google Scholar 

  92. 92.

    Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  Google Scholar 

  93. 93.

    Davis, L. & Maizels, N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc. Natl. Acad. Sci. USA 111, E924–E932 (2014).

    Article  CAS  Google Scholar 

  94. 94.

    Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Gutschner, T., Haemmerle, M., Genovese, G., Draetta, G. F. & Chin, L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14, 1555–1566 (2016).

    Article  CAS  Google Scholar 

  96. 96.

    Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Zelensky, A. N., Schimmel, J., Kool, H., Kanaar, R. & Tijsterman, M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat. Commun. 8, 66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). This report is the first to show efficient and precise programmable base editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  CAS  Google Scholar 

  101. 101.

    Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).

    Article  CAS  Google Scholar 

  102. 102.

    Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.v.d.O. is supported by the Netherlands Organization for Scientific Research (NWO) through a TOP grant (714.015.001). J.L is supported by the gravitation program from the Netherlands Organization for Scientific Research (NWO). The work of R.K. is part of the Oncode Institute which is partly financed by the Dutch Cancer Society and was funded by the gravitation program from the NWO. The work of N.G. is supported in part by Stichting Singelswim Utrecht, Stichting FSHD and TKI/Health Holland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John van der Oost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W.Y., Lebbink, J.H.G., Kanaar, R. et al. Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol 14, 642–651 (2018). https://doi.org/10.1038/s41589-018-0080-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing