Scavenging of superoxide by a membrane-bound superoxide oxidase

Abstract

Superoxide is a reactive oxygen species produced during aerobic metabolism in mitochondria and prokaryotes. It causes damage to lipids, proteins and DNA and is implicated in cancer, cardiovascular disease, neurodegenerative disorders and aging. As protection, cells express soluble superoxide dismutases, disproportionating superoxide to oxygen and hydrogen peroxide. Here, we describe a membrane-bound enzyme that directly oxidizes superoxide and funnels the sequestered electrons to ubiquinone in a diffusion-limited reaction. Experiments in proteoliposomes and inverted membranes show that the protein is capable of efficiently quenching superoxide generated at the membrane in vitro. The 2.0 Å crystal structure shows an integral membrane di-heme cytochrome b poised for electron transfer from the P-side and proton uptake from the N-side. This suggests that the reaction is electrogenic and contributes to the membrane potential while also conserving energy by reducing the quinone pool. Based on this enzymatic activity, we propose that the enzyme family be denoted superoxide oxidase (SOO).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CybB reacts with superoxide and ubiquinol.
Fig. 2: CybB exhibits superoxide-oxidase activity in vitro.
Fig. 3: High-resolution structure of CybB.
Fig. 4: Hypothetical functional context of SOO.

References

  1. 1.

    Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    PubMed  Google Scholar 

  2. 2.

    Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Barnham, K. J., Masters, C. L. & Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug. Discov. 3, 205–214 (2004).

    CAS  PubMed  Google Scholar 

  4. 4.

    Riera, C. E., Merkwirth, C., De Magalhaes Filho, C. D. & Dillin, A. Signaling networks determining life span. Annu. Rev. Biochem. 85, 35–64 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    CAS  PubMed  Google Scholar 

  6. 6.

    Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Jenney, F. E., Verhagen, M. F., Cui, X. & Adams, M. W. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306–309 (1999).

    CAS  PubMed  Google Scholar 

  8. 8.

    Magnani, F. et al. Crystal structures and atomic model of NADPH oxidase. Proc. Natl Acad. Sci. USA 114, 6764–6769 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Sullivan, M. N. et al. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci. Signal. 8, ra2 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704 (2003).

    CAS  PubMed  Google Scholar 

  11. 11.

    Kerscher, S., Dröse, S., Zickermann, V. & Brandt, U. The three families of respiratory NADH dehydrogenases. Results Probl. Cell. Differ. 45, 185–222 (2008).

    CAS  PubMed  Google Scholar 

  12. 12.

    Imlay, J. A. & Fridovich, I. Superoxide production by respiring membranes of Escherichia coli. Free Radic. Res. Commun. 12-13, 59–66 (1991). Pt 1.

    CAS  Google Scholar 

  13. 13.

    Windrem, D. A. & Plachy, W. Z. The diffusion-solubility of oxygen in lipid bilayers. Biochim. Biophys. Acta. 600, 655–665 (1980).

    CAS  PubMed  Google Scholar 

  14. 14.

    Mao, G. D. & Poznansky, M. J. Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biological membranes. FEBS Lett. 305, 233–236 (1992).

    CAS  PubMed  Google Scholar 

  15. 15.

    Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).

    CAS  PubMed  Google Scholar 

  16. 16.

    Guo, J. & Lemire, B. D. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J. Biol. Chem. 278, 47629–47635 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Husen, P. & Solov’yov, I. A. Spontaneous binding of molecular oxygen at the Qo-site of the bc1 complex could stimulate superoxide formation. J. Am. Chem. Soc. 138, 12150–12158 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Takahashi, M. & Asada, K. Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophys. 267, 714–722 (1988).

    CAS  PubMed  Google Scholar 

  19. 19.

    Korshunov, S. & Imlay, J. A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Murakami, H., Kita, K. & Anraku, Y. Purification and properties of a diheme cytochrome b561 of the Escherichia coli respiratory chain. J. Biol. Chem. 261, 548–551 (1986).

    CAS  PubMed  Google Scholar 

  21. 21.

    Murakami, H., Kita, K. & Anraku, Y. Cloning of cybB, the gene for cytochrome b561 of Escherichia coli K12. Mol. Gen. Genet. 198, 1–6 (1984).

    CAS  PubMed  Google Scholar 

  22. 22.

    Murakami, H., Kita, K., Oya, H. & Anraku, Y. Chromosomal location of the Escherichia coli cytochrome b556 gene, cybA. Mol. Gen. Genet. 196, 1–5 (1984).

    CAS  PubMed  Google Scholar 

  23. 23.

    Villegas, J. M., Volentini, S. I., Rintoul, M. R. & Rapisarda, V. A. Amphipathic C-terminal region of Escherichia coli NADH dehydrogenase-2 mediates membrane localization. Arch. Biochem. Biophys. 505, 155–159 (2011).

    CAS  PubMed  Google Scholar 

  24. 24.

    Antonini, E., Brunori, M., Colosimo, A., Greenwood, C. & Wilson, M. T. Oxygen ‘pulsed’ cytochrome c oxidase: functional properties and catalytic relevance. Proc. Natl Acad. Sci. USA 74, 3128–3132 (1977).

    CAS  PubMed  Google Scholar 

  25. 25.

    Ingledew, W. J. & Poole, R. K. The respiratory chains of Escherichia coli. Microbiol. Rev. 48, 222–271 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Abreu, I. A. & Cabelli, D. E. Superoxide dismutases – a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta. 1804, 263–274 (2010).

    CAS  PubMed  Google Scholar 

  27. 27.

    Flint, D. H., Tuminello, J. F. & Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993).

    CAS  PubMed  Google Scholar 

  28. 28.

    Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–376 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Moser, C. C., Chobot, S. E., Page, C. C. & Dutton, P. L. Distance metrics for heme protein electron tunneling. Biochim. Biophys. Acta. 1777, 1032–1037 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Winkler, J. R. & Gray, H. B. Electron flow through metalloproteins. Chem. Rev. 114, 3369–3380 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Getzoff, E. D. et al. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306, 287–290 (1983).

    CAS  PubMed  Google Scholar 

  33. 33.

    Getzoff, E. D. et al. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature 358, 347–351 (1992).

    CAS  PubMed  Google Scholar 

  34. 34.

    Tainer, J. A., Getzoff, E. D., Richardson, J. S. & Richardson, D. C. Structure and mechanism of copper, zinc superoxide dismutase. Nature 306, 284–287 (1983).

    CAS  PubMed  Google Scholar 

  35. 35.

    Fee, J. A. Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol. Microbiol. 5, 2599–2610 (1991).

    CAS  PubMed  Google Scholar 

  36. 36.

    Benov, L. T. & Fridovich, I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J. Biol. Chem. 269, 25310–25314 (1994).

    CAS  PubMed  Google Scholar 

  37. 37.

    Lu, P. et al. Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc. Natl Acad. Sci. USA 111, 1813–1818 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Sjöstrand, D., Diamanti, R., Lundgren, C. A. K., Wiseman, B. & Högbom, M. A rapid expression and purification condition screening protocol for membrane protein structural biology. Protein Sci. 8, 1653–1666 (2017).

    Google Scholar 

  39. 39.

    von Ballmoos, C., Biner, O., Nilsson, T. & Brzezinski, P. Mimicking respiratory phosphorylation using purified enzymes. Biochim. Biophys. Acta. 1857, 321–331 (2016).

    Google Scholar 

  40. 40.

    Klug, D., Rabani, J. & Fridovich, I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J. Biol. Chem. 247, 4839–4842 (1972).

    CAS  PubMed  Google Scholar 

  41. 41.

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Futai, M. Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J. Membr. Biol. 15, 15–28 (1974).

    CAS  PubMed  Google Scholar 

  43. 43.

    Frericks, H. L., Zhou, D. H., Yap, L. L., Gennis, R. B. & Rienstra, C. M. Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J. Biomol. NMR 36, 55–71 (2006).

    CAS  PubMed  Google Scholar 

  44. 44.

    Björklöf, K., Zickermann, V. & Finel, M. Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of its interaction with ubiquinone analogues. FEBS Lett. 467, 105–110 (2000).

    PubMed  Google Scholar 

  45. 45.

    Peskin, A. V. & Winterbourn, C. C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radical Biol. Med. 103, 188–191 (2017).

    CAS  Google Scholar 

  46. 46.

    Khodursky, A. B. et al. Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. Methods Mol. Biol. 224, 61–78 (2003).

    CAS  PubMed  Google Scholar 

  47. 47.

    Nicholson, P., Joncourt, R. & Mühlemann, O. Analysis of nonsense-mediated mRNA decay in mammalian cells. Curr. Protoc. Cell. Biol. 55, 27.4–27.4.61 (2012).

    Google Scholar 

  48. 48.

    Zhou, K. et al. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol. Biol. 12, 18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Pape, T. & Schneider, T. R. IUCr. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl. Crystallogr. 37, 843–844 (2004).

    CAS  Google Scholar 

  51. 51.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Vagin, A. A. et al. Refmac5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    PubMed  Google Scholar 

  54. 54.

    Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    CAS  PubMed  Google Scholar 

  55. 55.

    Irwin, J. J. et al. Automated docking screens: a feasibility study. J. Med. Chem. 52, 5712–5720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mysinger, M. M. & Shoichet, B. K. Rapid context-dependent ligand desolvation in molecular docking. J Chem. Inf. Model. 50, 1561–1573 (2010).

    CAS  PubMed  Google Scholar 

  57. 57.

    Lorber, D. M. & Shoichet, B. K. Hierarchical docking of databases of multiple ligand conformations. Curr. Top. Med. Chem. 5, 739–749 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Jormakka, M., Törnroth, S., Byrne, B. & Iwata, S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295, 1863–1868 (2002).

    PubMed  Google Scholar 

  59. 59.

    Weiner, S. J., Kollman, P. A. & Case, D. A. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).

    CAS  Google Scholar 

  60. 60.

    Brenk, R., Vetter, S. W., Boyce, S. E., Goodin, D. B. & Shoichet, B. K. Probing molecular docking in a charged model binding site. J. Mol. Biol. 357, 1449–1470 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Knut and Alice Wallenberg foundation Wallenberg Academy Fellows (2012.0233), the Swedish Foundation For Strategic Research (FFL09-0008) and the Swedish Research Council (2017-04018) to M.H., and the Swiss National Science Foundation to C.v.B. (153351). The help of H. Luidalepp with RNA extraction from E. coli and A. Eberle (University of Bern) with RT–qPCR and data analysis is greatly acknowledged. The authors wish to thank the staff of beamline X06SA at the Swiss Light Source for their support with data collection.

Author information

Affiliations

Authors

Contributions

D.S. and M.H. conceived the study. C.A.K.L., D.S., M.B. and M.H. solved the structure. C.A.K.L., D.S., O.B., P.B., C.v.B. and M.H. designed functional experiments and analyzed data. O.B., C.A.K.L., A.-L.J. and C.v.B. performed functional experiments. A.R. and J.C. performed and analyzed docking experiments. C.v.B. and M.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Dan Sjöstrand or Christoph von Ballmoos or Martin Högbom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2, and Supplementary Figures 1–10

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lundgren, C.A.K., Sjöstrand, D., Biner, O. et al. Scavenging of superoxide by a membrane-bound superoxide oxidase. Nat Chem Biol 14, 788–793 (2018). https://doi.org/10.1038/s41589-018-0072-x

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing