Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases

A Publisher Correction to this article was published on 27 June 2018

This article has been updated

Abstract

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(ii)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural analyses of the JmjC hydroxylase, JMJD7.
Fig. 2: JMJD7 interacts with DRG–DFRP complexes in an active-site-dependent manner.
Fig. 3: JMJD7 catalyzes lysyl hydroxylation of the DRG1/2 GTPases.
Fig. 4: JMJD7 is a (3S)-lysyl hydroxylase that promotes DRG ribonucleic acid binding.

Similar content being viewed by others

Change history

  • 27 June 2018

    In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read “These authors contributed equally: Suzana Markolovic, Qinqin Zhuang.” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Markolovic, S., Wilkins, S. E. & Schofield, C. J. Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20712–20722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ploumakis, A. & Coleman, M. L. OH, the places you’ll go! Hydroxylation, gene expression, and cancer. Mol. Cell 58, 729–741 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Semenza, G. L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Elkins, J. M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem. 278, 1802–1806 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Walport, L. J., Hopkinson, R. J. & Schofield, C. J. Mechanisms of human histone and nucleic acid demethylases. Curr. Opin. Chem. Biol. 16, 525–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Johansson, C. et al. The roles of Jumonji-type oxygenases in human disease. Epigenomics 6, 89–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Morera, L., Lübbert, M. & Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics 8, 57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. & Ratcliffe, P. J. Pharmacological targeting of the HIF hydroxylases – A new field in medicine development. Mol. Aspects Med. 47–48, 54–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Cockman, M. E., Webb, J. D. & Ratcliffe, P. J. FIH-dependent asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Ann. NY Acad. Sci. 1177, 9–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Webby, C. J. et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Chowdhury, R. et al. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 510, 422–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ge, W. et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 8, 960–962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato, M. et al. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Res. 39, 1576–1585 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Feng, T. et al. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol. Cell 53, 645–654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuang, Q., Feng, T. & Coleman, M. L. Modifying the maker: Oxygenases target ribosome biology. Translation 3, e1009331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Del Rizzo, P. A., Krishnan, S. & Trievel, R. C. Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol. Cell. Biol. 32, 4044–4052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markolovic, S. et al. Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Curr. Opin. Struct. Biol. 41, 62–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Rose, N. R., McDonough, M. A., King, O. N. F., Kawamura, A. & Schofield, C. J. Inhibition of 2-oxoglutarate dependent oxygenases. Chem. Soc. Rev. 40, 4364–4397 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Matsunami, N. et al. Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population. Mol. Autism 5, 5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lancaster, D. E. et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem. J. 383, 429–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishikawa, K., Azuma, S., Ikawa, S., Semba, K. & Inoue, J. I. Identification of DRG family regulatory proteins (DFRPs): Specific regulation of DRG1 and DRG2. Genes Cells 10, 139–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Francis, S. M., Gas, M.-E., Daugeron, M.-C., Bravo, J. & Seraphin, B. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Res. 40, 11100–11114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mantri, M. et al. The 2-oxoglutarate-dependent oxygenase JMJD6 catalyses oxidation of lysine residues to give 5S-hydroxylysine residues. ChemBioChem 12, 531–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Witkop, B. The application of Hudson’s lactone rule to γ- and δ-hydroxyamino acids and the question of the configuration of δ-hydroxy-L-lysine from collagen. Experientia XII, 372–374 (1956).

    Article  Google Scholar 

  26. Myllyharju, J. & Kivirikko, K. I. Collagens and collagen-related diseases. Ann. Med. 33, 7–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Leśniak, R. K., Markolovic, S., Tars, K. & Schofield, C. J. Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-N ε-trimethyllysine. Chem. Commun. 53, 440–442 (2017).

    Article  CAS  Google Scholar 

  28. Daugeron, M.-C., Prouteau, M., Lacroute, F. & Séraphin, B. The highly conserved eukaryotic DRG factors are required for efficient translation in a manner redundant with the putative RNA helicase Slh1. Nucleic Acids Res. 39, 2221–2233 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Ishikawa, K. et al. Cloning and characterization of Xenopus laevis drg2, a member of the developmentally regulated GTP-binding protein subfamily. Gene 322, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, M. et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 278, 1086–1097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Walport, L. J. et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat. Commun. 7, 11974 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mantri, M., Zhang, Z., McDonough, M. A. & Schofield, C. J. Autocatalysed oxidative modifications to 2-oxoglutarate dependent oxygenases. FEBS J. 279, 1563–1575 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powers, J. C., Asgian, J. L., Ekici, O. D. & James, K. E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Nelson, B. J., Maas, K. J., Dekeyser, J. L. & Stafstrom, J. P. Association of DRG1 and DRG2 with ribosomes from pea, Arabidopsis, and yeast. Int. J. Plant Sci. 170, 834–844 (2009).

    Article  CAS  Google Scholar 

  38. Ishikawa, K., Akiyama, T., Ito, K., Semba, K. & Inoue, J. Independent stabilizations of polysomal Drg1/Dfrp1 complex and non-polysomal Drg2/Dfrp2 complex in mammalian cells. Biochem. Biophys. Res. Commun. 390, 552–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Scotti, J. S. et al. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proc. Natl Acad. Sci. USA 111, 13331–13336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christopher J. Schofield, C. J. & Hausinger, R. P. (eds.). 2-Oxoglutarate-Dependent Oxygenases RSC Metallobiology Series No. 3 (Royal Society of Chemistry, Cambridge, UK, 2015).

  42. Jang, S. H., Kim, A.-R., Park, N.-H., Park, J. W. & Han, I.-S. DRG2 regulates G2/M progression via the cyclin B1-Cdk1 complex. Mol. Cells 39, 699–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, L., Lv, Y., Dong, J., Hu, S. & Peng, R. DRG1 is a potential oncogene in lung adenocarcinoma and promotes tumor progression via spindle checkpoint signaling regulation. Oncotarget 7, 72795–72806 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Wei, D. et al. Molecular cloning and expression of two closely related GTP-binding proteins from zebrafish. DNA Seq. 15, 246–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Vlangos, C. N., Das, P., Patel, P. I. & Elsea, S. H. Assignment of developmentally regulated GTP-binding protein (DRG2) to human chromosome band 17p11.2 with somatic cell hybrids and localization to the Smith–Magenis syndrome critical interval. Cytogenet. Cell Genet. 88, 283–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. de Krom, M. et al. A common variant in DRD3 receptor is associated with autism spectrum disorder. Biol. Psychiatry 65, 625–630 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Katz, M. J. et al. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc. Natl Acad. Sci. USA 111, 4025–4030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fischer, R. et al. Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis. Mol. Cell. Proteomics 11, M111.013904 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Xu, D. et al. Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach. Mol. Cell. Proteomics 7, 2215–2228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pérez-Arellano, I., Spínola-Amilibia, M. & Bravo, J. Human Drg1 is a potassium-dependent GTPase enhanced by Lerepo4. FEBS J. 280, 3647–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parsons, T. B. et al. Optimal synthetic glycosylation of a therapeutic antibody. Angew. Chemie Int. Ed. 55, (2361–2367 (2016).

    Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D 68, 368–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council (BB/L009846/1, C.J.S.), the Medical Research Council (MR/N021053/1, M.L.C.), the Wellcome Trust (106244/Z/14/Z, C.J.S.), Cancer Research UK (24552, M.L.C.), the University of Oxford Clarendon Fund (S.M.) and Kellogg College, University of Oxford (through a Junior Research Fellowship; M.I.A.) for support. We thank E. Flashman (Department of Chemistry, University of Oxford) for assistance with the 18O2 experiment and K. Connolly (Institute of Cancer and Genomics Sciences, University of Birmingham) for Drosophila cDNA.

Author information

Authors and Affiliations

Authors

Contributions

The following 'second authors' contributed equally: S.E.W., C.D.E., M.I.A. and M.J.K. S.M., Q.Z., S.E.W., M.J.K., P.W., R.C., M.L.C. and C.J.S. designed and conceived the research; S.M. prepared all recombinant JMJD7 constructs and performed and analyzed CD experiments and all enzyme activity assays by MALDI-MS and NMR; Q.Z. performed substrate discovery proteomics, enzyme–substrate interaction assays, all JMJD7 loss-of-function experiments, and DRG–DFRP interaction, GTPase and RNA-binding assays; S.M. and R.C. performed the crystallography in which R.C. played both an experimental and supervisory role; C.D.E. performed confocal microscopy, cellular dimerization, and dmJMJD7 interaction experiments; Q.Z., C.H. and H.E.M. prepared mammalian expression constructs used by Q.Z.; W.G. and S.M. prepared plasmids for recombinant protein production; S.M. performed and analyzed amino-acid analyses with guidance from S.E.W.; M.I.A. performed and analyzed peptide NMR work, produced and purified recombinant DRG1, performed DRG1 stability and activity assays, and analyzed data; Q.Z. purified exogenous and endogenous proteins for MS and analyzed data with help from M.L.C.; R.K., S.D. and R.F. performed MS and analyzed data; B.M.K. provided MS instrument use. R.K.L. prepared hydroxylysine standards; S.M. and W.B.S. performed and analyzed native MS/SEC-MALS; J.L.P.B. provided SEC-MALS instrument use. M.J.K. and P.W. performed and analyzed Drosophila experiments; R.C. performed enzyme–substrate modeling, prepared recombinant dmJMJD7 and performed proteolysis assays; M.Y., M.E.C. and P.J.R. performed preliminary immunoprecipitations; S.M., Q.Z., S.E.W., C.D.E., R.C., M.L.C. and C.J.S. analyzed data; S.M., Q.Z., R.C., M.L.C. and C.J.S. wrote the manuscript.

Corresponding authors

Correspondence to Rasheduzzaman Chowdhury, Mathew L. Coleman or Christopher J. Schofield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–39

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markolovic, S., Zhuang, Q., Wilkins, S.E. et al. The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nat Chem Biol 14, 688–695 (2018). https://doi.org/10.1038/s41589-018-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0071-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing