Brief Communication | Published:

The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides

Abstract

The potent antibacterial lanthipeptide microvionin, isolated from a culture of Microbacterium arborescens, exhibits a new triamino-dicarboxylic acid moiety, termed avionin, and an unprecedented N-terminal guanidino fatty acid. We identified the corresponding biosynthetic gene cluster and reconstituted central steps of avionin biosynthesis in vitro. Genome mining and isolation of nocavionin from Nocardia terpenica revealed a widespread distribution of this lanthipeptide class, termed lipolanthines, which may be useful as future antimicrobial drugs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Arnison, P. G. et al. Nat. Prod. Rep. 30, 108–160 (2013).

  2. 2.

    Müller, W. M., Schmiederer, T., Ensle, P. & Süssmuth, R. D. Angew. Chem. Int. Ed. Engl. 49, 2436–2440 (2010).

  3. 3.

    Hsu, S.-T. D. et al. Nat. Struct. Mol. Biol. 11, 963–967 (2004).

  4. 4.

    Caetano, T., Süssmuth, R. D. & Mendo, S. Curr. Microbiol. 70, 364–368 (2015).

  5. 5.

    Somma, S., Merati, W. & Parenti, F. Antimicrob. Agents Chemother. 11, 396–401 (1977).

  6. 6.

    Meindl, K. et al. Angew. Chem. Int. Ed. Engl. 49, 1151–1154 (2010).

  7. 7.

    May, M. Nature 509, S4–S5 (2014).

  8. 8.

    Krawczyk, J. M. et al. Chem. Biol. 20, 111–122 (2013).

  9. 9.

    Sit, C. S., Yoganathan, S. & Vederas, J. C. Acc. Chem. Res. 44, 261–268 (2011).

  10. 10.

    Kupke, T., Kempter, C., Jung, G. & Götz, F. J. Biol. Chem. 270, 11282–11289 (1995).

  11. 11.

    Steenbergen, J. N., Alder, J., Thorne, G. M. & Tally, F. P. J. Antimicrob. Chemother. 55, 283–288 (2005).

  12. 12.

    Kraas, F. I., Helmetag, V., Wittmann, M., Strieker, M. & Marahiel, M. A. Chem. Biol. 17, 872–880 (2010).

  13. 13.

    Li, J. & Jensen, S. E. Chem. Biol. 15, 118–127 (2008).

  14. 14.

    Süssmuth, R. D. & Mainz, A. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).

  15. 15.

    Hong, H., Fill, T. & Leadlay, P. F. Angew. Chem. Int. Ed. Engl. 52, 13096–13099 (2013).

  16. 16.

    Etchegaray, A. & Machini, M. T. in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Vol. 2 (ed. Méndez-Vilas, A.) 951–959 (Formatex Research Center, 2013).

  17. 17.

    Sardar, D., Lin, Z. & Schmidt, E. W. Chem. Biol. 22, 907–916 (2015).

  18. 18.

    Jungmann, N. A., van Herwerden, E. F., Hügelland, M. & Süssmuth, R. D. ACS Chem. Biol. 11, 69–76 (2016).

  19. 19.

    Völler, G. H. et al. ChemBioChem 13, 1174–1183 (2012).

  20. 20.

    Wang, H. & van der Donk, W. A. ACS Chem. Biol. 7, 1529–1535 (2012).

  21. 21.

    Cronan, J. E. & Thomas, J. Methods Enzymol. 459, 395–433 (2009).

  22. 22.

    Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Nat. Prod. Rep. 24, 162–190 (2007).

  23. 23.

    Li, B. et al. Science 311, 1464–1467 (2006).

  24. 24.

    Hoshino, Y. et al. Int. J. Syst. Evol. Microbiol. 57, 1456–1460 (2007).

  25. 25.

    Gago, G., Diacovich, L., Arabolaza, A., Tsai, S.-C. & Gramajo, H. FEMS Microbiol. Rev. 35, 475–497 (2011).

  26. 26.

    CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI document M07-A10. (Wayne, PA, Clinical and Laboratory Standards Institute,2015).

  27. 27.

    Weber, T. et al. Nucleic Acids Res. 43, W237–W243 (2015).

  28. 28.

    States, D. J. & Gish, W. J. Comput. Biol. 1, 39–50 (1994).

  29. 29.

    Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. Nucleic Acids Res. 31, 3381–3385 (2003).

  30. 30.

    Florova, G., Kazanina, G. & Reynolds, K. A. Biochemistry 41, 10462–10471 (2002).

  31. 31.

    Gibson, D. G. et al. Nat. Methods 6, 343–345 (2009).

  32. 32.

    Andersen, K. R., Leksa, N. C. & Schwartz, T. U. Proteins Struct. Funct. Bioinforma. 81, 1857–1861 (2013).

  33. 33.

    Majer, F., Schmid, D. G., Altena, K., Bierbaum, G. & Kupke, T. J. Bacteriol. 184, 1234–1243 (2002).

  34. 34.

    Sievers, F. et al. Mol. Syst. Biol. 7, 539 (2011).

  35. 35.

    Bachmann, B. O. & Ravel, J. Chapter 8. methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

Download references

Acknowledgements

This research was supported by grants of the Deutsche Forschungsgemeinschaft (Project No.: SU 239/25-1). We thank L. Steinhäuser and R. Al Toma for helpful discussions and advice.

Author information

V.W. cloned the expression vectors, performed the genome mining, set up the in vitro assays and conducted the MS and tandem MS measurements. A.M. performed the NMR experiments and the subsequent NMR structure elucidation. M.-A.J.S. synthesized the synthetic precursor peptide. N.A.J. identified and annotated the microvionin gene cluster from the genomic data. G.L., S.T. and A.D.-Z. conducted the screening experiments, isolated microvionin and nocavionin and determined MICs. J.A., D.L.B., A.M. and R.D.S. designed the experiments. V.W., A.M. and R.D.S. wrote the paper.

Competing interests

The authors declare no competing interests.

Correspondence to Roderich D. Süssmuth.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–17, Supplementary Tables 1–7, Supplementary Notes 1–2

  2. Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Structure and biosynthetic gene cluster of microvionin.
Fig. 2: MicKC- and MicD-mediated formation of the avionin moiety in vitro.
Fig. 3: Genome mining for lipolanthines.