Abstract
The potent antibacterial lanthipeptide microvionin, isolated from a culture of Microbacterium arborescens, exhibits a new triamino-dicarboxylic acid moiety, termed avionin, and an unprecedented N-terminal guanidino fatty acid. We identified the corresponding biosynthetic gene cluster and reconstituted central steps of avionin biosynthesis in vitro. Genome mining and isolation of nocavionin from Nocardia terpenica revealed a widespread distribution of this lanthipeptide class, termed lipolanthines, which may be useful as future antimicrobial drugs.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif
Nature Communications Open Access 26 August 2022
-
Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family
BMC Genomics Open Access 03 June 2020
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.



References
Arnison, P. G. et al. Nat. Prod. Rep. 30, 108–160 (2013).
Müller, W. M., Schmiederer, T., Ensle, P. & Süssmuth, R. D. Angew. Chem. Int. Ed. Engl. 49, 2436–2440 (2010).
Hsu, S.-T. D. et al. Nat. Struct. Mol. Biol. 11, 963–967 (2004).
Caetano, T., Süssmuth, R. D. & Mendo, S. Curr. Microbiol. 70, 364–368 (2015).
Somma, S., Merati, W. & Parenti, F. Antimicrob. Agents Chemother. 11, 396–401 (1977).
Meindl, K. et al. Angew. Chem. Int. Ed. Engl. 49, 1151–1154 (2010).
May, M. Nature 509, S4–S5 (2014).
Krawczyk, J. M. et al. Chem. Biol. 20, 111–122 (2013).
Sit, C. S., Yoganathan, S. & Vederas, J. C. Acc. Chem. Res. 44, 261–268 (2011).
Kupke, T., Kempter, C., Jung, G. & Götz, F. J. Biol. Chem. 270, 11282–11289 (1995).
Steenbergen, J. N., Alder, J., Thorne, G. M. & Tally, F. P. J. Antimicrob. Chemother. 55, 283–288 (2005).
Kraas, F. I., Helmetag, V., Wittmann, M., Strieker, M. & Marahiel, M. A. Chem. Biol. 17, 872–880 (2010).
Li, J. & Jensen, S. E. Chem. Biol. 15, 118–127 (2008).
Süssmuth, R. D. & Mainz, A. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).
Hong, H., Fill, T. & Leadlay, P. F. Angew. Chem. Int. Ed. Engl. 52, 13096–13099 (2013).
Etchegaray, A. & Machini, M. T. in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Vol. 2 (ed. Méndez-Vilas, A.) 951–959 (Formatex Research Center, 2013).
Sardar, D., Lin, Z. & Schmidt, E. W. Chem. Biol. 22, 907–916 (2015).
Jungmann, N. A., van Herwerden, E. F., Hügelland, M. & Süssmuth, R. D. ACS Chem. Biol. 11, 69–76 (2016).
Völler, G. H. et al. ChemBioChem 13, 1174–1183 (2012).
Wang, H. & van der Donk, W. A. ACS Chem. Biol. 7, 1529–1535 (2012).
Cronan, J. E. & Thomas, J. Methods Enzymol. 459, 395–433 (2009).
Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Nat. Prod. Rep. 24, 162–190 (2007).
Li, B. et al. Science 311, 1464–1467 (2006).
Hoshino, Y. et al. Int. J. Syst. Evol. Microbiol. 57, 1456–1460 (2007).
Gago, G., Diacovich, L., Arabolaza, A., Tsai, S.-C. & Gramajo, H. FEMS Microbiol. Rev. 35, 475–497 (2011).
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI document M07-A10. (Wayne, PA, Clinical and Laboratory Standards Institute,2015).
Weber, T. et al. Nucleic Acids Res. 43, W237–W243 (2015).
States, D. J. & Gish, W. J. Comput. Biol. 1, 39–50 (1994).
Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. Nucleic Acids Res. 31, 3381–3385 (2003).
Florova, G., Kazanina, G. & Reynolds, K. A. Biochemistry 41, 10462–10471 (2002).
Gibson, D. G. et al. Nat. Methods 6, 343–345 (2009).
Andersen, K. R., Leksa, N. C. & Schwartz, T. U. Proteins Struct. Funct. Bioinforma. 81, 1857–1861 (2013).
Majer, F., Schmid, D. G., Altena, K., Bierbaum, G. & Kupke, T. J. Bacteriol. 184, 1234–1243 (2002).
Sievers, F. et al. Mol. Syst. Biol. 7, 539 (2011).
Bachmann, B. O. & Ravel, J. Chapter 8. methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).
Acknowledgements
This research was supported by grants of the Deutsche Forschungsgemeinschaft (Project No.: SU 239/25-1). We thank L. Steinhäuser and R. Al Toma for helpful discussions and advice.
Author information
Authors and Affiliations
Contributions
V.W. cloned the expression vectors, performed the genome mining, set up the in vitro assays and conducted the MS and tandem MS measurements. A.M. performed the NMR experiments and the subsequent NMR structure elucidation. M.-A.J.S. synthesized the synthetic precursor peptide. N.A.J. identified and annotated the microvionin gene cluster from the genomic data. G.L., S.T. and A.D.-Z. conducted the screening experiments, isolated microvionin and nocavionin and determined MICs. J.A., D.L.B., A.M. and R.D.S. designed the experiments. V.W., A.M. and R.D.S. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–17, Supplementary Tables 1–7, Supplementary Notes 1–2
Rights and permissions
About this article
Cite this article
Wiebach, V., Mainz, A., Siegert, MA.J. et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat Chem Biol 14, 652–654 (2018). https://doi.org/10.1038/s41589-018-0068-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41589-018-0068-6
This article is cited by
-
A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif
Nature Communications (2022)
-
Conformational remodeling enhances activity of lanthipeptide zinc-metallopeptidases
Nature Chemical Biology (2022)
-
Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family
BMC Genomics (2020)
-
Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides
Nature Chemistry (2020)
-
The hidden enzymology of bacterial natural product biosynthesis
Nature Reviews Chemistry (2019)