FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation

Abstract

Ferroptosis is a non-apoptotic form of regulated cell death caused by the failure of the glutathione-dependent lipid-peroxide-scavenging network. FINO2 is an endoperoxide-containing 1,2-dioxolane that can initiate ferroptosis selectively in engineered cancer cells. We investigated the mechanism and structural features necessary for ferroptosis initiation by FINO2. We found that FINO2 requires both an endoperoxide moiety and a nearby hydroxyl head group to initiate ferroptosis. In contrast to previously described ferroptosis inducers, FINO2 does not inhibit system xc or directly target the reducing enzyme GPX4, as do erastin and RSL3, respectively, nor does it deplete GPX4 protein, as does FIN56. Instead, FINO2 both indirectly inhibits GPX4 enzymatic function and directly oxidizes iron, ultimately causing widespread lipid peroxidation. These findings suggest that endoperoxides such as FINO2 can initiate a multipronged mechanism of ferroptosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: FINO2 induces ferroptotic cell death.
Fig. 2: FINO2 does not alter glutathione homeostasis.
Fig. 3: FINO2 indirectly inhibits GPX4 activity.
Fig. 4: Potency of analogs.
Fig. 5: FINO2 directly oxidizes ferrous ion.
Fig. 6: Ferroptosis initiated by FINO2 oxidizes a large subset of the lipidome independent of lipoxygenase activity.

References

  1. 1.

    Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Lockshin, R. A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Cell. Biol. 2, 545–550 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell. Mol. Life. Sci. 73, 2195–2209 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 113, E4966–E4975 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Crespo-Ortiz, M. P. & Wei, M. Q. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol. 2012, 247597 (2012).

    Article  Google Scholar 

  8. 8.

    Li, Z., Li, Q., Wu, J., Wang, M. & Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: what else do we need to do? Molecules 21, 1331 (2016).

    Article  Google Scholar 

  9. 9.

    Krishna, S. et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2, 82–90 (2014).

    Article  Google Scholar 

  10. 10.

    Abrams, R. P., Carroll, W. L. & Woerpel, K. A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS. Chem. Biol. 11, 1305–1312 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Krainz, T. et al. A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent. Sci. 2, 653–659 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Gaschler, M. M. & Stockwell, B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 482, 419–425 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. ELife 3, e02523 (2014).

    Article  Google Scholar 

  19. 19.

    Yin, J. et al. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 136, 5351–5358 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Ishii, T., Bannai, S. & Sugita, Y. Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J. Biol. Chem. 256, 12387–12392 (1981).

    CAS  Google Scholar 

  21. 21.

    Toppo, S., Flohé, L., Ursini, F., Vanin, S. & Maiorino, M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim. Biophys. Acta 1790, 1486–1500 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Beekman, A. C. et al. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod. 60, 325–330 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    Beekman, A. C. et al. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med. 64, 615–619 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    Burkhard, J. A., Wuitschik, G., Rogers-Evans, M., Müller, K. & Carreira, E. M. Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. Int. Ed. Engl. 49, 9052–9067 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Wuitschik, G. et al. Oxetanes in drug discovery: structural and synthetic insights. J. Med. Chem. 53, 3227–3246 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Trost, B. M. & Bogdanow, M. J. New synthetic reactions—versatile cyclobutanone (spiroannelation) and gamma-butyrolactone (lactone annelation) synthesis. J. Am. Chem. Soc. 95, 5321–5334 (1973).

    CAS  Article  Google Scholar 

  27. 27.

    Fujioka, H. et al. Reaction of the acetals with TESOTf-base combination; speculation of the intermediates and efficient mixed acetal formation. J. Am. Chem. Soc. 128, 5930–5938 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Murai, A., Ono, M. & Masamune, T. Intramolecular cyclization of 3,4-epoxy alcohols—oxetane formation. Bull. Chem. Soc. Jpn. 50, 1226–1231 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    Biemann, K. & Seibl, J. Application of mass spectrometry to structure problems. 2. Stereochemistry of epimeric, cyclic alcohols. J. Am. Chem. Soc. 81, 3149–3150 (1959).

    CAS  Article  Google Scholar 

  30. 30.

    Liu, Y. et al. Guanacastane-type diterpenoids with cytotoxic activity from Coprinus plicatilis. Bioorg. Med. Chem. Lett. 22, 5059–5062 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Ki, D. W. et al. New antioxidant sesquiterpenes from a culture broth of Coprinus echinosporus. J. Antibiot. (Tokyo) 68, 351–353 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Vilotijevic, I. & Jamison, T. F. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew. Chem. Int. Ed. Engl. 48, 5250–5281 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    CAS  Article  Google Scholar 

  34. 34.

    Spangler, B. et al. A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models. J. Med. Chem. 59, 11161–11170 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Fontaine, S. D., DiPasquale, A. G. & Renslo, A. R. Efficient and stereocontrolled synthesis of 1,2,4-trioxolanes useful for ferrous iron-dependent drug delivery. Org. Lett. 16, 5776–5779 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Davidson, B. S. Cytotoxic 5-membered cyclic peroxides from a plakortis sponge. J. Org. Chem. 56, 6722–6724 (1991).

    CAS  Article  Google Scholar 

  37. 37.

    D’Ambrosio, M., Guerriero, A., Debitus, C., Waikedre, J. & Pietra, F. Relative contributions to antitumoral activity of lipophilic vs. polar reactive moieties in marine terpenoids. Tetrahedr. Lett 38, 6285–6288 (1997).

    Article  Google Scholar 

  38. 38.

    Hurlocker, B., Miner, M. R. & Woerpel, K. A. Synthesis of silyl monoperoxyketals by regioselective cobalt-catalyzed peroxidation of silyl enol ethers: application to the synthesis of 1,2-dioxolanes. Org. Lett. 16, 4280–4283 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Park, S. E. et al. Induction of apoptosis in MDA-MB-231 human breast carcinoma cells with an ethanol extract of Cyperus rotundus L. by activating caspases. Oncol. Rep. 32, 2461–2470 (2014).

    Article  Google Scholar 

  40. 40.

    Yu, B. & Reynisson, J. Bond stability of the “undesirable” heteroatom-heteroatom molecular moieties for high-throughput screening libraries. Eur. J. Med. Chem. 46, 5833–5837 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Nam, W. et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 29, 335–340 (2007).

    Article  Google Scholar 

  42. 42.

    Ooko, E. et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22, 1045–1054 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Barnes-Seeman, D. et al. Metabolically stable tert-butyl replacement. ACS Med. Chem. Lett. 4, 514–516 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Wang, X. et al. Spiro- and dispiro-1,2-dioxolanes: contribution of iron(II)-mediated one-electron vs two-electron reduction to the activity of antimalarial peroxides. J. Med. Chem. 50, 5840–5847 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free. Radic. Biol. Med. 34, 496–502 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    Hong, Y. et al. The role of selenium-dependent and selenium-independent glutathione peroxidases in the formation of prostaglandin F. J. Biol. Chem. 264, 13793–13800 (1989).

    CAS  Google Scholar 

  47. 47.

    Dansen, T. B., Wirtz, K. W. A., Wanders, R. J. A. & Pap, E. H. W. Peroxisomes in human fibroblasts have a basic pH. Nat. Cell Biol. 2, 51–53 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N. & Dunn, R. R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE 10, e0134116 (2015).

    Article  Google Scholar 

  49. 49.

    Creek, D. J., Chiu, F. C. K., Prankerd, R. J., Charman, S. A. & Charman, W. N. Kinetics of iron-mediated artemisinin degradation: effect of solvent composition and iron salt. J. Pharm. Sci. 94, 1820–1829 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Wu, Y., Yue, Z. Y. & Wu, Y. L. Interaction of qinghaosu (artemisinin) with cysteine sulfhydryl mediated by traces of non-heme iron. Angew. Chem. Int. Ed. Engl. 38, 2580–2582 (1999).

    CAS  Article  Google Scholar 

  51. 51.

    Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  Google Scholar 

  52. 52.

    Boettcher, C., Pries, C. & Vangent, C. M. A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24, 203–204 (1961).

    Article  Google Scholar 

  53. 53.

    Tyurina, Y. Y. et al. A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 6, 542–552 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Lin for assistance with NMR spectroscopy and mass spectrometry, C. Hu for X-ray analysis, along with the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation (NSF) under Award Numbers DMR-0820341 and DMR-1420073, and J. Chung for assistance with cell culture. This research was supported by the Training Program in Molecular Biophysics Grant (T32GM008281 to M.M.G.), the National Cancer Institute (R35CA209896 and P01CA087497 to B.R.S), the National Institute of General Medical Sciences (1RO1GM118730 to K.A.W.), the National Heart, Lung, and Blood Institute (HL114453 to V.E.K. and Y.Y.T.), the National Institute of Allergy and Infectious Diseases (U19AI068021 to V.E.K. and Y.Y.T.) and the MRSEC Program of the National Science Foundation (DMR-1420073 to E.P.-P.). The Bruker Avance-400, 500 and 600 MHz spectrometers (NYU) were acquired through the support of the National Science Foundation (CHE-01162222).

Author information

Affiliations

Authors

Contributions

M.M.G., A.A.A., H.L., B.R.S. and K.A.W. contributed to the writing of the manuscript. M.M.G., A.A.A., L.K.M., V.E.K., B.R.S. and K.A.W. designed and planned research. M.M.G., A.A.A., H.L., J.M.C., D.W.H., D.S.Z., P.H.B., Y.Y.T. and J.D.D. conducted in vitro biochemical and metabolomic assays. M.M.G, A.A.A., B.H., C.A.V., D.W.H. and A.J.L. collected and analyzed cell viability data. L.F.Y. performed quantitative PCR. A.A.A. and H.L. conducted NMR studies. A.A.A. conducted stability studies. H.L. and E.R. conducted western blotting experiments. A.A.A., B.H. and D.S.Z. synthesized FINO2 and all structural analogues. A.Y.C. aided in furan synthesis. E.P.-P. aided in oxetane synthesis. M.A.F., A.V.B., V.V.S., A.J.L. and M.S.S. synthesized deuterated arachidonic acids. All authors have given their approval of the final version of the manuscript.

Corresponding authors

Correspondence to K. A. Woerpel or Brent R. Stockwell.

Ethics declarations

Competing interests

M.S.S. is the Chief Scientific Officer of Retrotrope, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Table 1 and Supplementary Note

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaschler, M.M., Andia, A.A., Liu, H. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14, 507–515 (2018). https://doi.org/10.1038/s41589-018-0031-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing