Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resistance to nonribosomal peptide antibiotics mediated by d-stereospecific peptidases

A Publisher Correction to this article was published on 07 March 2018

This article has been updated

Abstract

Nonribosomal peptide antibiotics, including polymyxin, vancomycin, and teixobactin, most of which contain d-amino acids, are highly effective against multidrug-resistant bacteria. However, overusing antibiotics while ignoring the risk of resistance arising has inexorably led to widespread emergence of resistant bacteria. Therefore, elucidation of the emerging mechanisms of resistance to nonribosomal peptide antibiotics is critical to their implementation. Here we describe a networking-associated genome-mining platform for linking biosynthetic building blocks to resistance components associated with biosynthetic gene clusters. By applying this approach to 5,585 complete bacterial genomes spanning the entire domain of bacteria, with subsequent chemical and enzymatic analyses, we demonstrate a mechanism of resistance toward nonribosomal peptide antibiotics that is based on hydrolytic cleavage by d-stereospecific peptidases. Our finding reveals both the widespread distribution and broad-spectrum resistance potential of d-stereospecific peptidases, providing a potential early indicator of antibiotic resistance to nonribosomal peptide antibiotics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Co-occurrence networks reveal the widespread distribution of BGC-associated d-stereospecific peptidases.
Fig. 2: Genetic and metabolic analyses reveal the d-stereospecific hydrolytic activities of DRPs.
Fig. 3: In vitro characterization reveals the d-stereospecific hydrolytic activities of DRPs.
Fig. 4: Biochemical analyses reveal the broad-spectrum resistance of BogQ against peptide antibiotics.

Change history

  • 07 March 2018

    In the version of this article originally published, the links and files for the Supplementary Information, including Supplementary Tables 1–5, Supplementary Figures 1–25, Supplementary Note, Supplementary Datasets 1–4 and the Life Sciences Reporting Summary, were missing in the HTML. The error has been corrected in the HTML version of this article.

References

  1. 1.

    Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    Article  Google Scholar 

  2. 2.

    Schwarzer, D., Finking, R. & Marahiel, M. A. Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    Hancock, R. E. W. & Chapple, D. S. Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    Law, V. et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Balibar, C. J., Vaillancourt, F. H. & Walsh, C. T. Generation of d amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem. Biol. 12, 1189–1200 (2005).

    Article  CAS  Google Scholar 

  6. 6.

    Cava, F., Lam, H., de Pedro, M. A. & Waldor, M. K. Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell. Mol. Life Sci. 68, 817–831 (2011).

    Article  CAS  Google Scholar 

  7. 7.

    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  CAS  Google Scholar 

  8. 8.

    Smith, T. L. et al. Emergence of vancomycin resistance in Staphylococcus aureus. N. Engl. J. Med. 340, 493–501 (1999).

    Article  CAS  Google Scholar 

  9. 9.

    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    Article  CAS  Google Scholar 

  10. 10.

    Meziane-Cherif, D., Stogios, P. J., Evdokimova, E., Savchenko, A. & Courvalin, P. Structural basis for the evolution of vancomycin resistance d,d-peptidases. Proc. Natl. Acad. Sci. USA 111, 5872–5877 (2014).

    Article  CAS  Google Scholar 

  11. 11.

    Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cochrane, S. A. et al. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc. Natl. Acad. Sci. USA 113, 11561–11566 (2016).

    Article  CAS  Google Scholar 

  13. 13.

    Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).

    Article  CAS  Google Scholar 

  15. 15.

    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jiang, X. et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tang, X. et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem. Biol. 10, 2841–2849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Asano, Y. & Lübbehüsen, T. L. Enzymes acting on peptides containing d-amino acid. J. Biosci. Bioeng. 89, 295–306 (2000).

    Article  CAS  Google Scholar 

  21. 21.

    Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    Reimer, D., Pos, K. M., Thines, M., Grün, P. & Bode, H. B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol. 7, 888–890 (2011).

    Article  CAS  Google Scholar 

  23. 23.

    Reimer, D. & Bode, H. B. A natural prodrug activation mechanism in the biosynthesis of nonribosomal peptides. Nat. Prod. Rep. 31, 154–159 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    Brotherton, C. A. & Balskus, E. P. A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J. Am. Chem. Soc. 135, 3359–3362 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    Lohans, C. T. et al. Biochemical, structural, and genetic characterization of tridecaptin A1, an antagonist of Campylobacter jejuni. ChemBioChem 15, 243–249 (2014).

    Article  CAS  Google Scholar 

  26. 26.

    Cochrane, S. A., Lohans, C. T., van Belkum, M. J., Bels, M. A. & Vederas, J. C. Studies on tridecaptin B1, a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Org. Biomol. Chem. 13, 6073–6081 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Barsby, T., Kelly, M. T., Gagné, S. M. & Andersen, R. J. Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org. Lett. 3, 437–440 (2001).

    Article  CAS  Google Scholar 

  28. 28.

    Yang, X., Huang, E., Yuan, C., Zhang, L. & Yousef, A. E. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl. Environ. Microbiol. 82, 2763–2772 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    de la Fuente-Núñez, C., Mertens, J., Smit, J. & Hancock, R. E. The bacterial surface layer provides protection against antimicrobial peptides. Appl. Environ. Microbiol. 78, 5452–5456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Altenbuchner, J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 82, 5421–5427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Breukink, E. & de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5, 321–323 (2006).

    Article  CAS  Google Scholar 

  34. 34.

    Wencewicz, T. A. New antibiotics from Nature’s chemical inventory. Bioorg. Med. Chem. 24, 6227–6252 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Moffitt, M. C. & Neilan, B. A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70, 6353–6362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Weber, T. et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  Google Scholar 

  40. 40.

    Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Weblogs Soc. Media (Association for the Advancement of Artificial Intelligence, 2009).

  43. 43.

    Ives, A. R. & Matthew, R. H. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).

    Article  Google Scholar 

  44. 44.

    Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).

    Article  Google Scholar 

  45. 45.

    Miller, J. E. D., Anthony, R. I., Susan, P. H. & Ellen, I. D. Early- and late-flowering guilds respond differently to landscape spatial structure. J. Ecol. https://doi.org/10.1111/1365-2745.12849 (2017).

  46. 46.

    Fujii, K., Ikai, Y., Oka, H., Suzuki, M. & Harada, K. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with mass spectrometry and its practical application. Anal. Chem. 69, 5146–5151 (1997).

    Article  CAS  Google Scholar 

  47. 47.

    Wagner, J. K., Marquis, K. A. & Rudner, D. Z. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol. Microbiol. 73, 963–974 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  50. 50.

    Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  51. 51.

    Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang, S. S. p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J. Am. Chem. Soc. 95, 1328–1333 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously supported by a grant from the China Ocean Mineral Resources Research and Development Association (COMRRDA17SC01 to P.-Y.Q.). We thank J. Sun and A. Cheung for comments on the manuscript and Y.C. Yan for help with scripts development.

Author information

Affiliations

Authors

Contributions

Y.-X.L., Z.Z., P.H., and W.-P.Z. performed bioinformatics analysis and chemical and biochemical experiments. All authors analyzed and discussed the results. P.-Y. Q. and Y.-X.L. designed the study and prepared the manuscript.

Corresponding author

Correspondence to Pei-Yuan Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Figures 1–25

Life Sciences Reporting Summary

Supplementary Note

Nonribosomal peptide antibiotics resistance mediated by a widespread family of d-stereospecific peptidases

Supplementary Datasets 1–4

Dataset 1 (Bacterial genomes used for biosynthetic analysis) Dataset 2 (Biosynthetic elements and resistance elements) Dataset 3 (Statistical analysis for networking) Dataset 4 (Proteins used for phylogenetic analysis)

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, YX., Zhong, Z., Hou, P. et al. Resistance to nonribosomal peptide antibiotics mediated by d-stereospecific peptidases. Nat Chem Biol 14, 381–387 (2018). https://doi.org/10.1038/s41589-018-0009-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing