Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP

Abstract

Protein glycosylation regulates many cellular processes. Numerous glycosyltransferases with broad substrate specificities have been structurally characterized. A novel inverting glycosyltransferase, EarP, specifically transfers rhamnose from dTDP-β-l-rhamnose to Arg32 of bacterial translation elongation factor P (EF-P) to activate its function. Here we report a crystallographic study of Neisseria meningitidis EarP. The EarP structure contains two tandem Rossmann-fold domains, which classifies EarP in glycosyltransferase superfamily B. In contrast to other structurally characterized protein glycosyltransferases, EarP binds the entire β-sheet structure of EF-P domain I through numerous interactions that specifically recognize its conserved residues. Thus Arg32 is properly located at the active site, and causes structural change in a conserved dTDP-β-l-rhamnose-binding loop of EarP. Rhamnosylation by EarP should occur via an SN2 reaction, with Asp20 as the general base. The Arg32 binding and accompanying structural change of EarP may induce a change in the rhamnose-ring conformation suitable for the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of EarP.
Fig. 2: EF-P recognition by EarP.
Fig. 3: Mutational analyses.
Fig. 4: Binding of dTDP-β-l-rhamnose by EarP.
Fig. 5: Possible conformational change of the rhamnose ring induced by EF-P binding.

Similar content being viewed by others

References

  1. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  2. Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    Article  CAS  Google Scholar 

  3. Liu, J. & Mushegian, A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12, 1418–1431 (2003).

    Article  CAS  Google Scholar 

  4. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  5. Hurtado-Guerrero, R. & Davies, G. J. Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Curr. Opin. Chem. Biol. 16, 479–487 (2012).

    Article  CAS  Google Scholar 

  6. Fritz, T. A., Raman, J. & Tabak, L. A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J. Biol. Chem. 281, 8613–8619 (2006).

    Article  CAS  Google Scholar 

  7. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    Article  CAS  Google Scholar 

  8. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K. P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    Article  CAS  Google Scholar 

  9. Yu, H. et al. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11, 847–854 (2015).

    Article  CAS  Google Scholar 

  10. Valero-González, J. et al. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12, 240–246 (2016).

    Article  Google Scholar 

  11. Li, Z. et al. Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1. Nat. Chem. Biol. 13, 757–763 (2017).

    Article  CAS  Google Scholar 

  12. Yu, H. et al. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat. Chem. Biol. 12, 735–740 (2016).

    Article  CAS  Google Scholar 

  13. Lassak, J. et al. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat. Chem. Biol. 11, 266–270 (2015).

    Article  CAS  Google Scholar 

  14. Rajkovic, A. et al. Cyclic rhamnosylated elongation factor P establishes antibiotic resistance in Pseudomonas aeruginosa. MBio 6, e00823 (2015).

    Article  CAS  Google Scholar 

  15. Yanagisawa, T. et al. Neisseria meningitidis translation elongation factor P and its active-site arginine residue are essential for cell viability. PLoS One 11, e0147907 (2016).

    Article  Google Scholar 

  16. Li, X. et al. Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first ArgRha specific antibody. Chem. Sci 7, 6995–7001 (2016).

    Article  CAS  Google Scholar 

  17. Doerfel, L. K. et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88 (2013).

    Article  CAS  Google Scholar 

  18. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

    Article  CAS  Google Scholar 

  19. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat. Struct. Mol. Biol. 17, 1136–1143 (2010).

    Article  CAS  Google Scholar 

  20. Roy, H. et al. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat. Chem. Biol. 7, 667–669 (2011).

    Article  CAS  Google Scholar 

  21. Navarre, W. W. et al. PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol. Cell 39, 209–221 (2010).

    Article  CAS  Google Scholar 

  22. De Bruyn, A. & Anteunis, M. 1H-N.m.r. study of L-rhamnose, methyl alpha-L-rhamnopyranoside, and 4-o-beta-D-galactopranosyl-L-rhamnose in deuterium oxide. Carbohydr. Res. 47, 158–163 (1976).

    Article  Google Scholar 

  23. McGeachin, H. M. & Beevers, C. A. The crystal structure of α-rhamnose monohydrate. Acta Crystallogr. 10, 227–232 (1957).

    Article  CAS  Google Scholar 

  24. Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS One 6, e25365 (2011).

    Article  CAS  Google Scholar 

  25. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  26. Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. USA 101, 9595–9600 (2004).

    Article  Google Scholar 

  27. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  28. Brazier-Hicks, M. et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. USA 104, 20238–20243 (2007).

    Article  CAS  Google Scholar 

  29. Isiorho, E. A., Jeon, B. S., Kim, N. H., Liu, H. W. & Keatinge-Clay, A. T. Structural studies of the spinosyn forosaminyltransferase, SpnP. Biochemistry 53, 4292–4301 (2014).

    Article  CAS  Google Scholar 

  30. Li, L. et al. Crystal structure of Medicago truncatula UGT85H2—insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J. Mol. Biol. 370, 951–963 (2007).

    Article  CAS  Google Scholar 

  31. Mulichak, A. M., Lu, W., Losey, H. C., Walsh, C. T. & Garavito, R. M. Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Biochemistry 43, 5170–5180 (2004).

    Article  CAS  Google Scholar 

  32. Hayward, S., Kitao, A. & Berendsen, H. J. Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27, 425–437 (1997).

    Article  CAS  Google Scholar 

  33. Hol, W. G. The role of the alpha-helix dipole in protein function and structure. Prog. Biophys. Mol. Biol. 45, 149–195 (1985).

    Article  CAS  Google Scholar 

  34. Cremer, D. & Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 97, 1354–1358 (1975).

    Article  CAS  Google Scholar 

  35. Isiorho, E. A., Liu, H. W. & Keatinge-Clay, A. T. Structural studies of the spinosyn rhamnosyltransferase, SpnG. Biochemistry 51, 1213–1222 (2012).

    Article  CAS  Google Scholar 

  36. Chen, C. I. et al. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. EMBO J. 31, 3183–3197 (2012).

    Article  CAS  Google Scholar 

  37. Rocha, J. et al. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into xyloglucan fucosylation. Plant Cell 28, 2352–2364 (2016).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology: Macromolecular Crystallography, Part A, Vol. 276 (eds. Carter, C.W. Jr. & Sweet, R.M.) 307–326 (Academic Press, San Diego, 1997).

  39. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  40. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  41. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  44. Kwak, H. G. & Dohmae, N. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis. Biosci. Trends 10, 357–364 (2016).

    Article  Google Scholar 

  45. Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA, 2009).

    Google Scholar 

Download references

Acknowledgements

We thank the staff of beamlines BL32XU and BL26B2 at SPring-8 (Harima, Japan) and beamline BL5A at the Photon Factory (Tsukuba, Japan). We thank T. Terada, T. Imada, and T. Nakayama (RIKEN) for clerical assistance. We thank K. Ohtsuki, M. Usui, and A. Abe (RIKEN) for mass spectrometry analysis, and M. Kuratani and N. Sakai (RIKEN) for technical assistance. This work was supported by the Platform Project for Supporting Drug Discovery and Life Science Research from the Japan Agency for Medical Research and Development (AMED) (to S.Y.), and by JSPS KAKENHI (grant number 16K05859 to T.Y.). This research used the computational resources of the supercomputer HOKUSAI (RIKEN Advanced Center for Computing and Communications).

Author information

Authors and Affiliations

Authors

Contributions

S.Y., H.T., and T.Y. conceived the project. T. Sengoku, S.Y., and T.Y. designed the experiments. T. Sengoku and T.Y. prepared protein samples. T. Sengoku crystallized proteins and performed crystallographic experiments and analyses. Y.H. assisted with the crystallographic analyses. N.D., T. Suzuki, and T.Y. performed mass spectrometry experiments. T.Y. performed ITC experiments. T. Sengoku, C.W., and T.H. performed the MD simulation, with advice on the sugar conformation from Y.Y. All authors analyzed the data. T. Sengoku, S.Y., and T.Y. wrote the manuscript.

Corresponding authors

Correspondence to Shigeyuki Yokoyama or Tatsuo Yanagisawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–15

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengoku, T., Suzuki, T., Dohmae, N. et al. Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP. Nat Chem Biol 14, 368–374 (2018). https://doi.org/10.1038/s41589-018-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0002-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing